
Embedded system paranoia: a tool for testing

embedded system arithmetic

Les Hatton
Computing Laboratory, University of Kent∗

19 Feb 2004

Abstract

A new version of the well-known program paranoia has been intro-
duced specifically for testing the arithmetic of embedded control systems.
Embedded systems have become enormously complicated and widespread
in most if not all consumer devices today so there is a clear need to
measure the quality of the arithmetic. This paper describes the devel-
opment of ESP (Embedded System Paranoia) and gives example outputs
and free download sites. The example outputs indicate that even in the
21st century, the quality of arithmetic implementations cannot be taken
for granted.

1 Introduction

The quality of arithmetic implementation is of fundamental importance to
users in computer systems and has been addressed by a number of authors
over the years,[9], [8], [2] as a result of which effective standardised approaches
have appeared, [5], [6]. These together with tools for diagnosing arithmetic
problems have led to a gradual improvement in the quality of implementation
of arithmetic such that today in general purpose systems, arithmetic quality is
usually quite good. However such tools as have appeared have not in general
been available for embedded control systems.

Embedded control systems are at the heart of modern electronic system devel-
opment. Twenty years ago, an embedded control system might have contained
2K of ROM, a simple 4 bit CPU such as the 74181 and be entirely coded in
machine code. In general they controlled very simple devices and few demands
were placed on them to implement high quality arithmetic. Today, things are
completely different. Embedded control systems are in just about every con-
sumer product from an electric toaster to an automobile. Not only that but
the systems are as sophisticated as general purpose systems with in some cases,
many megabytes of RAM, IDE discs, high end 32 bit micro-processors and are
required to solve complex algorithms in real time such as coupled differential
equations. Such systems are commonly programmed in C and can constitute

∗L.Hatton@kent.ac.uk, lesh@oakcomp.co.uk

1

millions of lines of code. Consequently, the demands on the arithmetic system
are as high as in general purpose systems and the distinction between the two
types of system becomes increasingly more blurred each year.

Unfortunately, those tools which have been developed to diagnose arithmetic
quality have not usually been ported to embedded control system environments
and the quality of arithmetic implementation is therefore unknown currently.

2 Tools for measuring arithmetic quality

2.1 machar

machar is an implementation of work originally done by [2] a C implementation
of which appears in [10]. Its primary function is to discover properties of a
particular arithmetic implementation normally hidden from the user, for exam-
ple, (using the nomenclature described by [10] with IEEE compliant values in
brackets, [5]) include

• ibeta, the radix in which numbers are represented (2, 10). (This is Radix
in the ESP source code.)

• it, the number of digits in the base of the radix used to represent the
floating point mantissa, (24 in single precision). (This is Precision in the
ESP source code.)

• machep, which is the exponent of the smallest power of ibeta such that
1.0 + ibetamachep 6= 1.0, (-23). (This is U2 in the ESP source code.)

• eps, commonly referred to as the ”floating point precision”, ibetamachep, (1.19×
10−7).

• negep, which is the exponent of the smallest power of ibeta such that
1.0− ibetanegep 6= 1.0, (-24). (This is U1 in the ESP source code.)

• epsneg ibetanegep, (5.96 × 10−8) another way of defining floating point
precision and usually 0.5 times eps.

• iexp is the number of bits in the exponent including the sign, (8).

• minexp the smallest power of ibeta consistent with no leading zeroes in
the mantissa, (-126).

• xmin is ibetaminexp, (1.18× 10−38), the smallest useable floating value.

• maxexp the smallest +ve power of ibeta that causes overflow, (128).

• xmax is (1.0 − epsneg) × ibetamaxexp, (3.4 × 1038), the largest useable
floating value.

• irnd, the round-off code. In the IEEE standard, bit patterns correspond
to ”representable” values. The idea is that in any arithmetic operation
with two operands, addition say, the bit patterns are added ”exactly”
and then rounded to the nearest representable number. If this is exactly

2

half-way, the low order bit zero value is used. If irnd returns as 2 or 5,
rounding complies with IEEE. If it is 2 or 4, non-standard rounding is
taking place and if irnd is 0 or 3, truncation is taking place which is not
desirable. irnd also describes underflow. In IEEE, underflow is handled
by freezing the exponent at the smallest allowed value whilst the mantissa
gradually acquires leading zeroes, ”gracefully” losing precision. Other
implementations might simply truncate to zero.

• ngrd is the number of guard digits used when truncating the product of
two mantissae to fit the representation.

2.2 paranoia

paranoia is somewhat different and goes beyond machar, [1], [2]. Both paranoia
and machar try to establish the radix, precision and range (over/underflow
thresholds) of the arithmetic but paranoia goes beyond machar in looking for a
wider class of pathologies. In its original form, it is implemented as a series of
29 milestones (reporting points) and tests which included the following amongst
a large selection:-

• Basic tests on arithmetic operations on small numbers. Examples include
the following:-

– 1 * 2 = 2, 2 * 1 = 2, 2 / 1 = 2, 2 + 1 = 3 and a number of similar
operations.

– (-1) + (-1) * (-1) = 0 and a number of tests of commutativity

• Consistency of comparison generally. This can have important ramifica-
tions for many algorithms as the comparison of floating point numbers is
responsible for a number of well-know failures, [3]. The following are all
amongst a wide range of such tests:-

– 0 + 0 = 0

– (2 + 2)/2 = 2

– X=1 but X-1/2-1/2 != 0

– Non-normalised subtraction such as X=Y,X+Z != Y+Z

– (X - Y) + (Y - X) is non zero

• Underflow behaviour

• Overflow behaviour

• Presence of guard digits

• Tests of square root and powers with particular emphasis on suitability
for financial calculations

• Behaviour with Inf (1/0) and NaN (0/0). The IEEE standards provides
for bit patterns which indicate when an operation is pathological in some
sense. NaNs (Not a Number) come in two forms, signalling (exceptions
are indicated) and quiet.

• Compatibility with the IEEE 754/854 standards.

3

paranoia was first introduced as a BASIC program by W.M. Kahan in 1983.
The program was subsequently converted into Pascal by Brian Wichmann in
1985 and then to C by David Gay and Thomas Sumner in 1985-6 and was
later maintained by Richard Karpinski. The author used paranoia unchanged
for a long time on various systems to a great effect, (most systems failed in
some way, often spectacularly). However with the explosive growth of embedded
systems in the 1990s and the ever more sophisticated demands on the arithmetic
and particularly floating point arithmetic in those systems, there is obviously a
strong need to test embedded systems in the same way.

2.2.1 What is being diagnosed

Before describing the embedded system version of paranoia (ESP), it is worth-
while reflecting on what paranoia is actually doing when it finds a defect in the
arithmetic implementation. There are a number of layers involved with arith-
metic, for example, the functions wired onto the chip, perhaps microcode layers
and of course the compiler run-time library which sits on top. Any defect might
be associated with the chip or may be in the compiler run-time library software
itself. In general, paranoia has no way of knowing and simply reports when the
implementation as a whole potentially misbehaves in some way. However, if a
portable compiler like the GNU (http://www.gnu.org) compiler is used and the
same version run on different chips, very different results can be achieved. In
early experiments on a Pentium III with gcc 2.6.3, a number of serious defects
and failures were observed. Running precisely the same compiler version on a
Macintosh G3, a Motorola PowerPC based machine, raised one flaw only. Al-
though not conclusive, this does rather bring into question the quality of the
arithmetic implementation on the Pentium III. Later versions of gcc and differ-
ent compilers like Borland C++ and Visual C++ all passed paranoia with either
minor or even no flaws on the same Pentium III hardware so clearly some of the
problems at chip level were being worked around by software modifications to
the run-time library.

Of course such software work-arounds can affect performance considerably.
Gradual movement of high level functionality from software to hardware is one
of the key steps forward in improving performance. The reverse step to work-
around hardware defects at least partially undoes this good work.

3 ES Paranoia

For all kinds of reasons, optimisation capabilities, small footprint, generally
lightweight compiler and environment and plentiful available skill, C has been
the dominant language of embedded system control in the last 10 years. However
embedded control systems often do not implement the full ISO C standard, nor
do they have to. Aware of the heavy use in the embedded system world where
originally at least, memory and processing resources were at a premimu, the ISO
C committee had deliberately distinguished between free-standing (perhaps no
underlying OS), and hosted environments with a much cut-down version of the
standard available in the former.

4

3.1 ES Paranoia re-engineering

Unfortunately, paranoia was originally written to use a comprehensive set of
functionality in the C language and worse, it was designed to be interactive,
prompting the user at various stages during the execution. To cater for this, the
original source, paranoia.c was treated to the following re-engineering stages:-

• The program was re-written into a consistent style taking into account
the original authors’ comments ”this program does NOT exhibit good C
programming style”.

• The program was updated to use ISO C facilities such as function proto-
types.

• The program was modified to make it as standard conforming as possible
with ISO C90, ISO C99 and ISO C++99.

• The program was then redesigned as a batch environment.

• All I/O was funnelled through a single function message() whose job is
to send a text string back to the host via a serial port, TCP/IP link or
whatever facilities happen to be available.

• Two support functions, float2string() and int2string() were created so that
there was no dependence on I/O facilities in C which are frequently not
implemented in an embedded environment.

• Various parts of the C language can be switched out during compilation
by any combination of the flags NOSTDLIB, (if stdio.h is not available
which requires the programmer to supply a way of getting a string off the
embedded target back on to the host, NOSIGNAL (if signal.h is not avail-
able), NOSETJMP (if setjmp.h is not available), and NOZERODIVIDE
in case the embedded target is unable to handle either 1/0 or 0/0 without
halting.

• Additional tests for other arithmetic problems the author has experienced
over the years. This is an ongoing process. Initially only(x2 − y2)− (x−
y)(x + y) has been added but optional tests for the transcendental and
other functions are being designed.

The source code in revision 1.5, 2003-09-26 consists of 3277 source lines.

3.2 ES Paranoia intrinsic quality

Various tests were performed to ensure that annoying defects did not creep
in. These separate naturally into static and dynamic tests.

5

3.2.1 Static tests

The Safer C toolset [11] was used to ensure the absence of the following:-

• Syntax violations

• Constraint violations

• Undefined behaviour

• Common static defects

• Data-flow defects such as the use of objects before initialisation

• Implementation defined behaviour unless it was intrinsic to the way the
program works. There are three such occurrences in revision 1.5.

• The program adheres to EC– as described in [4], a subset of ISO C which
excludes most known failure modes.

The reader is referred to [3] or [7] for explanation of these concepts. As an
additional measure, the code was compiled at the highest level of warning with
both Visual C++ 6.0 and also GNU C. No serious warnings remain.

3.2.2 Dynamic tests

The program was tested against the original version of paranoia on several
different architectures to ensure that the results were consistent. These are
summarised in a later section.

3.3 Diagnostic levels in ESP

The original paranoia had four kinds of anomaly which in decreasing order of
importance were, FAILURE, SERIOUS DEFECT, DEFECT and FLAW. Based
on comments in the original version of paranoia, ESP naturally extends this to
six levels of quality defined as follows:-

1. Excellent. No FAILURES, SERIOUS DEFECTS, DEFECTS or FLAWS
and IEEE 754/854 compatible rounding.

2. Very good. No FAILURES, SERIOUS DEFECTS, DEFECTS or FLAWS
but non IEEE compatible rounding.

3. Good. No FAILURES, SERIOUS DEFECTS or DEFECTS but some
inconvenient FLAWS.

4. Acceptable. No FAILURES or SERIOUS DEFECTS but some DE-
FECTS and perhaps some FLAWS.

5. Unacceptable. No FAILURES but some SERIOUS DEFECTS and per-
haps some DEFECTS and FLAWS.

6. Broken. FAILURES and perhaps some SERIOUS DEFECTS, DEFECTS
and FLAWS.

6

3.4 Porting ESP to a new environment

All that is necessary is to modify message(), float2string() and int2string() for
the embedded target, compile it on the host switching out facilities as necessary,
download it and then run it capturing the output on the host. The source code
of message() follows to exemplify what is necessary. It generally takes a very
short while to do the necessary changes, (look for the TODO string).

/*---*/
/*
* Get a string to the outside world somehow.
*/

void
message(int append_nl, char * string)
{
/*
* Guard - passing NULL to the C run-time library can seriously
* damage your health.
*/

if (string == NULL) return;
/* ======= */
/*
* If stdio is present, use it gratefully.
*/

#ifndef NOSTDIO
printf("%s", string);

#else
/*
* TODO
* Do what you can with local facilities for sending a stream
* of characters in the character variable ’string’ to the outside world.
*/

#endif
if (append_nl)
{

ifndef NOSTDIO
printf("\n");

else
/*
* TODO
* Do what you can with local facilities for sending a newline
* to the outside world.
*/

endif
}

}
/*---*/

float2string() and int2string() are similar although may need a little more think-
ing about. The whole of the code is available for free download and the author
will undertake to merge user’s contributions for this.

7

3.5 Portability

Most embedded system compilers now implement ISO C quite well at least in its
9899:1990 incarnation. The author took great pains to make the code compliant
with ISO C and ISO C++ so there should be little problem running ESP on a
reasonable embedded system.

4 Running ESP on a general purpose machine

ESP is now a batch program with no user intervention. As an example, it was
built to assume the presence of signal.h, setjmp.h, and stdio.h and allowed to
try to divide by zero. It then produced the following output (abbreviated here)
on a SuSE 8.2 Linux machine running gcc version 3.3 20030226.

COMMENT: ===
COMMENT: Welcome to ESP - Embedded System Paranoia
COMMENT: Please let me know your experiences
COMMENT: and suggestions at lesh@oakcomp.co.uk or
COMMENT: L.Hatton@kent.ac.uk
COMMENT:
COMMENT: $Revision: 1.1 $ $Date: 2004/02/18 05:20:19 $
COMMENT: This version will attempt divide by zero.
COMMENT: This version uses <stdio.h>
COMMENT: This version uses <signal.h>
COMMENT: This version uses <setjmp.h>
COMMENT: This version uses double precision.
COMMENT: ===

-------> Diagnosis resuming after Milestone 0, Page 1
COMMENT: -1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240
PASSED : small integer tests are all OK.
COMMENT: Searching for Radix and Precision.
COMMENT: Radix = 2.00000000000000000e+00
COMMENT: Closest relative separation found is U1 = 1.11022302462515654e-16
COMMENT: Recalculating radix and precision
COMMENT: confirms closest relative separation U1.
COMMENT: Radix confirmed.

-------> Diagnosis resuming after Milestone 10, Page 2

-------> Diagnosis resuming after Milestone 20, Page 3
COMMENT: The number of significant digits of the
COMMENT: Radix is 5.30000000000000000e+01

-------> Diagnosis resuming after Milestone 25, Page 4
COMMENT: Some subexpressions appear to be calculated extra precisely with
COMMENT: about 3.31132995230379290e+00 extra significant decimals.
COMMENT: This is not tested further by this program.

-------> Diagnosis resuming after Milestone 30, Page 5

8

COMMENT: Subtraction appears to be normalized, as it should be.
COMMENT: Checking for guard digit in *, / and -.
PASSED : *, /, and - appear to have guard digits, as they should.

-------> Diagnosis resuming after Milestone 35, Page 6
COMMENT: Checking rounding on multiply, divide and add/subtract.
FLAW : Multiplication neither chopped nor correctly rounded.

LOTS MORE OUTPUT NOT SHOWN HERE ...

COMMENT: Trying to compute 1/0 gives inf
COMMENT: Trying to compute 0/0 gives nan

-------> Diagnosis resuming after Milestone 210, Page 30
COMMENT: ===
COMMENT: Embedded System Paranoia SUMMARY
COMMENT:
COMMENT: Number of DEFECTs discovered = 1
COMMENT: Number of FLAWs discovered = 1
COMMENT:
COMMENT: The arithmetic diagnosed may be Acceptable
COMMENT: despite inconvenient DEFECT.
COMMENT: Rating ...

Excellent
Very good
Good

=====> Acceptable
Unacceptable
Broken

COMMENT: END OF TEST.
COMMENT: ===

The size of the generated object module with everything compiled in as above
is around 80K with the GNU compiler.

5 Results of running ESP on real systems

The following results show what happens with real systems. They are shown in
tabular form along with an explanation of the environment under which they
were run. In one case, ESP could only be run on the simulator for space reasons.

9

5.1 Embedded systems

Compiler /
chip

Environment Date Failures Serious
Defects

Defects Flaws

IAR /
MSP430

simulator
+ EC++
library

01-Nov-2003 0 0 0 1

IAR /
MSP430

simulator +
IEEE library

01-Nov-2003 0 0 6 1

TI-OMAP
(ARM9)

target 26-Sep-2003 0 0 6 4

IAR /
MSP430

simulator +
Fast math li-
brary

01-Nov-2003 2 1 9 4

KEIL Compiler v.
3.12k

15-Jan-2004 4 2 4 3

STAR-12 target 19-Sep-2003 6 7 12 1

5.2 General purpose systems

As a control, the results of running ESP on general purpose systems is shown
below. Note that for these systems, the original paranoia was also run and gave
consistent results in each case as a further control.

Compiler /
chip

Environment Date Failures Serious
Defects

Defects Flaws

Visual C++
(no opti-
misation) /
Athlon 1400

Windows
98SE

18-Feb-2004 0 0 0 0

GNU C 3.3
20030226
(no opti-
misation)
/ Athlon
XP2700+

SuSE Linux
8.2

26-Sep-2003 0 0 1 1

GNU C 3.3.1
(no opti-
misation)
/ Athlon
XP2700+

SuSE Linux
9.0

18-Feb-2004 0 0 1 4

GNU C 3.3.1
(-O2 opti-
misation)
/ Athlon
XP2700+

SuSE Linux
9.0

18-Feb-2004 2 3 5 5

Two things can immediately be noted. First of all, the average level of arith-
metic quality in a general purpose environment is generally rather higher than

10

in those embedded control systems tried so far. Second, note the perils of using
optimisation levels even on general purpose machines when the compiler is quite
good without optimisation.

6 Downloading ESP

ESP is available for free download from the author’s personal site, http://www.leshatton.org/
as a zipped file containg a README document, the source esparanoia.c and a
sample output. The author welcomes results from different systems and will
endeavour to collate them for easy access on the above site.

7 Conclusions and Acknowledgements

A long overdue and enhanced version of paranoia has been made available for
embedded control systems. So far results suggest that it is very valuable in
flushing out anomalies in arithmetic implementations on embedded control sys-
tems. The author would like to acknowledge the help of Sivasankaran Krishnan,
Sukumar Ranjeethkumar and Vibin Viswanbharan (Visteon India), Jurg Sturli
(WORX) and Chris Tapp (Keylevel Consultants) for kindly taking the time to
adapt, compile and run ESP on the systems shown.

Finally, the author would like to acknowledge the pioneering work of the
original authors. The continuing existence of compiler / chip combinations
which fail this test bears mute witness to the importance of their work.

References

[1] Cody W.J., Waite W. (1980) Software Manual for the Elementary Func-
tions Prentice-Hall, Englewood Cliffs, NJ

[2] Cody W.J. (1988) ACM Transactions on Mathematical Software 14, p.
303-311

[3] Hatton L. (1995) Safer C: developing software for high integrity and safety
critical systems McGraw-Hill, ISBM 0-07-707640-0

[4] Hatton L. (2004) EC– A measurement based safer subset of ISO C suitable
for embedded system development Submitted to IST.

[5] IEEE (1985) IEEE standard for binary floating-point numbers ANSI/IEEE
754, IEEE, New York

[6] IEEE (1987) IEEE standard for radix-independent floating-point arithmetic
ANSI/IEEE 854, IEEE, New York

[7] ISO (1999) ISO 9899:1999 C programming language International Stan-
dards Organisation.

[8] Kahan W.M. (1983) Documentation header of the original paranoia
http://research.att.com/

11

[9] Malcolm, M.A. (1972) Communications of the ACM 15, p.949-951

[10] Press, W.H., Teukolsky S.A., Vettering W.T., Flannery B.P. (1992) Nu-
merical Recipes in C, second edition Cambridge University Press, ISBN
0-521-43108-5

[11] The Safer C toolset (1999) A toolset for enforcing statically safer subsets
in the C language http://www.oakcomp.co.uk/

12

