
1

Conservation of Information: Software’s Hidden
Clockwork ?

Les Hatton
Faculty of Science, Engineering and Computing, Kingston University, U.K.

F

Abstract—In this paper it is proposed that the Conservation of Hartley-
Shannon Information (hereafter contracted to H-S Information) plays
the same role in discrete systems as the Conservation of Energy
does in physical systems. In particular, using a variational approach,
it is shown that the symmetry of scale-invariance, power-laws and the
Conservation of H-S Information are intimately related and lead to the
prediction that the component sizes of any software system assembled
from components made from discrete tokens always asymptote to a
scale-free power-law distribution in the unique alphabet of tokens used
to construct each component.

This is then validated to a very high degree of significance on some
100 million lines of software in seven different programming languages
independently of how the software was produced, what it does, who
produced it or what stage of maturity it has reached. A further implication
of the theory presented here is that the average size of components
depends only on their unique alphabet, independently of the package
they appear in. This too is demonstrated on the main dataset and also
on 24 additional Fortran 90 packages.

Keywords: Information conservation,
Component size distribution, Power-law,
software systems

1 PRELIMINARIES

1.1 Statement of reproducibility

This paper adheres to the reproducibility principles es-
poused by [13] and includes references to all methods,
source code and data necessary to reproduce the results
presented. These are referred to here as the reproducibility
deliverables and are available at http://leshatton.org/.

1.2 Conservation of Energy

The Conservation of Energy is one of a few principles
which are at the very heart of all physical systems.
The principle has been modified over the years no-
tably to take account of the 4-vectors of relativity and
mass-equivalence but it remains pivotal. In 1915, Emmy
Noether proved a remarkable theorem, [20], which
shows that any differentiable symmetry of the action of a
physical system has a corresponding conservation law.
For example, the principle of Conservation of Energy
is a consequence of general invariance of systems with

An early version of this paper was presented at 10th IFIP WG 2.5, Boulder,
CO, 1-4 Aug. 2011. lesh@oakcomp.co.uk; leshatton.org

a Lagrangian under time translations; Conservation of
Linear Momentum is a consequence of invariance under
translation in space, and Conservation of Angular Mo-
mentum is a consequence of invariance under rotation.

The study of discrete systems is much younger and
has only come of age in the digital era where we now
routinely write millions of lines of source code to analyse
terabytes of digital data. It is of great interest to see if
there are similarly fundamental principles which apply
to the evolution of discrete systems. This work extends
that presented in [11], [12] to show that there is in-
deed an intimate relationship between symmetry, power-
laws and conservation principles in discrete systems
and verifies it to much higher levels of significance on
an experimental dataset of around 100 hundred million
lines of code incorporating some 500 million tokens.
It is then shown that this behaviour leads to further
interesting predictions which are themselves verified by
experiment.

1.3 Power-laws

Power-law behaviour can be represented by the pdf
(probability density function) p(s) of entities of a certain
size s appearing in some process, being given by a
relationship like:-

p(s) =
k

sγ
(1)

where k, γ are constants, which on a log p - log s scale
is a straight line with negative slope −γ. It can easily
be verified that the equivalent cdf (cumulative density
function) c(s) derived by integrating (1), also obeys a
power-law, (for γ 6= 1). For noisy data, the cdf form is
most often used because of its fundamental property of
reducing noise, as noted by [19] and it is this form which
will primarily be used for significance testing.

Power-law behaviour has been studied in a very wide
variety of environments, see for example [30] (linguis-
tics), [23] (economic systems) and the excellent reviews
by [16] and [19]. In software systems there has been
significant activity, much of it recent, [5], [15], [18], [3],
[8], [21], [2], [6], [14] and [11] all discussing power-law
behaviour but in various contexts.

2

For example, Mitzenmacher [15] considers the dis-
tributions of file sizes in general filing systems and
observed that such file sizes were typically distributed
with a lognormal body and a Pareto (i.e. power-law)
tail. Gorshenev and Pis’mak [8] studied the version
control records of a number of open source systems with
particular reference to the number of lines added and
deleted at each revision cycle. Louridas et al [14] show
that there is evidence that power laws appear in software
at the class and function level and that distributions with
long, fat tails in software are much more pervasive than
previously established,

1.4 Systems of discrete choices

A system based on discrete choices is any system which
is built from discrete pieces based on some available
set of choices. Such choices will be referred to as an
alphabet.The genome is a perfect example. This is an
exceptionally complex system which has evolved over
hundreds of millions of years, astonishingly from a set of
only four choices, the four bases of the genetic alphabet,
adenine, thymine, cytosine and guanine (ATCG). The
human genome comprises some 3 billion such bases.

Computational science provides many more examples.
In computational science, the source code of every com-
puter program written by every programmer in pursuit
of their computational results uses one or more program-
ming languages.

The individual bases or alphabet of a programming
language are called tokens and may take two forms; the
fixed tokens of the language as provided by the language
designers, and the variable tokens. Fixed tokens include
(in the languages C and C++ for example) keywords
such as if, else, while, {, }. These can not be changed, the
programmer can only choose to use them or not. Variable
tokens, with some small lexical restrictions (such as
the common requirement for identifiers to begin with
a letter), can be arbitrarily invented by the programmer
whilst constructing their program. These might be names
such as numberOfCandidateCollisions or lengthOfGene or
constants such as 3.14159265. There are many program-
ming languages but all obey the same principles and
every form of software system evolves from such tokens.

It should be noted that classifying programs in terms
of fixed and variable tokens is not new and appeared
at least as early as 1977 in the influential work of
Halstead who called them operators and operands, [9].
He developed his work to define various dependent
concepts such as software volume and effort and tested
them against programs of the time. This was further
elaborated by Shooman in [28]. A different approach
will be used here which borrows from the methods of
variational calculus.

Computer programs are often very large. The software
deployed in the search for the recently discovered Higg’s
boson comprises around 4 million lines of code [24].
At an average of around 5 tokens per line of code,

this corresponds to some 20 million tokens, although
this is still less than 1% of the human genome. The
largest systems in use today appear to be around 100
million lines of source code [17], perhaps 15% of the
number of tokens of the human genome. The (largely)
open systems used to test the model described here total
almost 100 million lines, (specifically 98,476,765 lines),
totalling some 500 million tokens. (If 5 tokens per line
seems a little low, it should be recalled that lines of
code include comment lines here in line with common
practice, whilst token counts do not.)

As an example of the nomenclature used here, con-
sider the following simple sorting algorithm written in
C, for example [25].

void bubble(int a[], int N)
{
int i, j, t;
for(i = N; i >= 1; i--)
{
for(j = 2; j <= i; j++)
{
if (a[j-1] > a[j])
{
t = a[j-1];a[j-1] = a[j];a[j] = t;

}
}

}
}

This algorithm contains 94 tokens in all based on 18
of the fixed tokens of ISO C

void int () [] { , ; for
= >= -- <= ++ if > -

and the 8 variable tokens (i.e. invented by the pro-
grammer)

bubble a N i j t 1 2

Although programming languages have a much richer
alphabet of tokens than genes, they obey the same
principles - some external process chooses tokens from
the available alphabet. It will be argued here that this
process is driven by a beautiful underlying clockwork,
that of Conservation of H-S Information.

1.5 Information theory

Information theory has its roots in the work of Hartley
[10] who showed that a message of N signs (i.e. tokens)
chosen from an alphabet or code book of S signs has
SN possibilities and that the quantity of information is
most reasonably defined as the logarithm of the number
of possibilities or choices. To gain a little insight into
the reason why the logarithm makes sense, consider
Figure 1. The number of choices necessary to reach any
of the 16 possible targets is the number of levels which is
log2(number of possibilities). The base of the logarithm
is not important here.

3

1 7 16... ...

Fig. 1. A binary tree. Each level proceeding down can
either go left or right. There are four levels leading down
to one of 24 = 16 possibilities. Only 4 choices are needed
to reach any of the possibilities. We note that log2(16) = 4.
Here the number 7 has been singled out by the choices
left, right, left, right.

Information theory was developed very substantially
by the pioneering work of Shannon [26], [27]. However
it is important not to conflate information content with
functionality or meaning and Cherry [4] specifically cau-
tions against this noting that the concept of information
based on alphabets as extended by Shannon and Wiener
amongst others, only relates to the symbols themselves
and not their meaning. Indeed, Hartley in his original
work, defined information as the successive selection of
signs, rejecting all meaning as a mere subjective factor.
In the sense used here therefore, Conservation of H-
S Information will be synonymous with Conservation
of Choice, not meaning. This turns out to be enough
to predict important system properties. In other words,
those properties depend only on the alphabet and not
on what combining tokens of the alphabet might mean
in any human sense.

2 A VARIATIONAL MODEL OF A DISCRETE TO-
KENISED SYSTEM

Armed with these pieces of information, a variational
model will be defined in which Conservation of H-S
Information is a fundamental constraint following on
from [12]. A general discrete tokenised system will be
considered here as T tokens distributed in some way
amongst M non-nested components, each containing ti
tokens where i = 1, ... ,M. In software systems, a com-
ponent might be a subroutine (Fortran), function (C)
or procedure (Tcl-Tk). In OO languages, it might be a
method1. In a genetic system, a component might be a
gene.

Before beginning the mathematical development, the
whole process can be visualised by imagining a large
number of people each independently carrying out the
same project in parallel. They each must take the same
large fixed number of beads, coloured so they can be

1. Strictly speaking methods can be and usually are nested in OO
systems although when compiled they are simply treated as a function
with some context and so remain relevant to this model of M non-
nested components. Proper source analysis requires them to be treated
the same way.

distinguished, and distribute them over their own large
set of boxes so that the total H-S information for their
set of beads is conserved in a manner which is described
below. The total number of beads must be the same for
each person, (although the colour distribution need not
be), and the total number of boxes must also be the same.
There are no other rules. When they have all completed
this task, an adjudicator measures the distribution of
beads in each participant’s boxes. If the numbers are
large enough, the adjudicator will find that the vast
majority of these distributions will obey a power-law in
the unique count of different coloured beads in each set
of boxes. This result is independent of the number of
beads, participants or the number of boxes, providing
they are large.

To prove this, the following variational methodology
is borrowed from the world of statistical physics, [29]
(p.217-) and for an excellent introduction, [7]. In the
kinetic theory of gases, a standard application is to
find the most common arrangement of molecules in a
gas subject to various constraints such as a fixed total
number of molecules and fixed total energy. In this
development, molecules will be replaced by tokens and
energy by an as yet undetermined quantity ε.

For this system, the total number of ways of organising
the tokens is given by:-

W =
T !

t1!t2!..tM !
(2)

where

T =

M∑
i=1

ti (3)

and where there is some externally imposed entity εi
associated with each token of component i whose total
amount is given by

U =

M∑
i=1

tiεi (4)

In a physical system, U corresponds to the total
internal energy and the variational method to follow
constrains this value to be fixed, i.e. solutions are sought
in which energy is conserved.

Using the method of Lagrangian multipliers and Stir-
ling’s approximation as described in [11], the most likely
distribution satisfying equation (2) subject to the con-
straints in equations (3) and (4) will be found. This
is equivalent to maximising the following variational
derived by taking the log of (2). Just as in maximum
likelihood theory, taking the log dramatically simplifies
the proceedings, in this case the factorials and allows the
use of Stirling’s theorem for large numbers and since it
is monotonic, a maximum in log W is coincident with a
maximum in W. This leads to

4

logW = T logT−
M∑
i=1

tilog(ti)+λ{T−
M∑
i=1

ti}+β{U−
M∑
i=1

tiεi}

(5)
where λ and β are the multipliers and log is the natural

logarithm. In essence, the variational process envisages
varying the contents ti of each of the components until
a maximum of log W is found. This is indicated by
taking δ(logW) = 0, (analogous to finding maxima in
differential calculus). Noting that the variational opera-
tor δ acts on pure constants such as TlogT, λT and βU
to produce zero just as when differentiating a constant;
δ(tilog(ti)) = δtilog(ti) + tiδ(log(ti) = δti(1 + log(ti)); εi
is independent of the variation by assumption and that
T and the ti are � 1 (to satisfy Stirling’s theorem), leads
to

0 = −
M∑
i=1

δti{log(ti) + α+ βεi} (6)

where α = 1+λ. (Further elaboration of this standard
technique can be found in Glazer and Wark [7].)

Finally, (6) must be true for all variations to the
occupancies δti and therefore implies

log(ti) = −α− βεi (7)

Using equation (3) to replace α, this can be manipu-
lated into the most likely, i.e. the equilibrium distribution
of tokens amongst the M components.

ti =
Te−βεi∑M
i=1 e

−βεi
(8)

Defining pi =
ti
T , equation (8) then yields

pi =
e−βεi∑M
i=1 e

−βεi
(9)

Following [23] and referring to equation (4), pi can
then be interpreted as a pdf and specifically as the
probability that a component of size ti tokens is found
is exponentially related to εi. The larger εi for example,
the less likely such a component is to appear. This
interpretation will be clarified shortly.

Hinting at what is to come, we can see immediately that
in any discrete system in which (3) and (4) are conserved,
and εi = logφi, is the logarithm of some quantity φi, then
the resulting size distribution is overwhelmingly likely to be
power-law in φi since exp(−βlogφi) = φ−βi . Furthermore
if φi is external in the sense of not being dependent on ti,
then relationship (9) is scale invariant and links conservation
quantities and scale-invariance with a power-law.

2.1 Merging with information theory
Extending [12], suppose now that the unique alphabet
of the ith component contains ai unique tokens and as
defined above, ti tokens in all. The number of ways

of arranging the tokens of this alphabet in component
i is therefore atii . Following Hartley, the quantity of
information in component i will therefore be defined as

Ii = log(ai)
ti = tilogai (10)

The total amount of information I, is then given by

I =

M∑
i=1

Ii =

M∑
i=1

tilogai (11)

Considering information as an intrinsic property and iden-
tifying U with I, it is immediately obvious that (11) is
identical with (4) if the unique alphabet ai is identified
with the function φi. Note that this emphasises the in-
timate relationship between variational solutions which
conserve energy (U) in a physical system and variational
solutions which conserve H-S information (I).

This identification also satisfies the requirements of
scale-invariance if we consider ai and ti as independent.
This allows (9) to be written as

pi =
e−βlogai

Q(β)
=

(ai)
−β

Q(β)
(12)

where Q(β) is just a scale factor which guarantees that
pi is a pdf and is given by

Q(β) =

M∑
i=1

e−βlogai =

M∑
i=1

(ai)
−β (13)

Summarising, subject to the twin constraints that the
total number of tokens T is fixed

T =

M∑
i=1

ti (14)

and the total Hartley / Shannon information content
I is also fixed

I =

M∑
i=1

Ii (15)

, then it is overwhelming likely that the distribution of
component sizes will be a power-law obeying the scale-
free pdf

pi =
(ai)

−β

Q(β)
∼ (ai)

−β (16)

With regard to clarifying the interpretation of pi as a
pdf, we can derive two simple but testable results in the
form of a marginal and a conditional density function. To
do this we will temporarily use continuous distribution
theory to clarify the development.

5

2.1.1 Marginal distribution of the unique alphabet
Since each component consists of ti tokens made up
from ai unique tokens, (16) will be treated as a joint
distribution in the random variables T and A, defined
as follows:-

p(T = ti, A = ai) =
1

Q(β)
(ai)

−β ; ti ≥ ai (17)

= 0; ti < ai (18)

since the probability of finding a component with less
total tokens than its unique alphabet is clearly zero.

The marginal probability pA(ai) is then defined by

pA(ai) ≡
∫ T

ai

p(T = ti, A = ai)dti =

∫ T

ai

1

Q(β)
(ai)

−βdti

(19)
where the support of T is [ai, T] since the joint proba-

bility is zero for ti < ai, and no component can be greater
than the total size of all components. From this,

pA(ai) =
(T − ai)
Q(β)

(ai)
−β ≈ T

Q(β)
(ai)

−β (20)

since T � ai.
This can be interpreted as implying that the marginal

probability distribution, pA, for the distribution of the ai over
all ti asymptotes to a scale-free power law in the unique
alphabet ai.

2.1.2 Conditional distribution of component sizes for
fixed alphabet
By definition the conditional probability distribution of
the component sizes, for a given alphabet is

pT |A(T |A = ai) ≡
p(T = ti, A = ai)

pA(ai)
(21)

giving

pT |A(T |A = ai) =
1

Q(β)
(ai)

−β Q(β)

(T − ai)(ai)−β
∼ k (22)

where k is a constant, for T � ai.
This can be interpreted as implying that the conditional

probability distribution, pT |A, for the size of a component
given a fixed alphabet is asymptotically uniform within its de-
fined support. Finally we note that the original variational
method used to derive (16), [11] requires T, ti � 1. The
support of the marginal distribution in (19) therefore also
requires that ai � 1, so we will test these predictions in
the regime ai ≥ 10.

Summarising, (16) then unifies the three concepts of
power-law, the symmetry of scale-invariance and a con-
servation principle. This is not quite the analogue of
Noether’s theorem for physical systems because, that is
exact and as far as is known, Conservation of Energy,
and others such as linear momentum (corresponding to

displacement symmetry) and angular momentum (cor-
responding to rotational symmetry) are always obeyed
in all systems. For discrete systems however, a pdf is
produced which is overwhelmingly likely to be obeyed
on average although it might not be in specific instances.
As will be seen, this is more than enough to manifest
itself emphatically in real systems.

It is worth repeating that this overall process does not
care about the tokens themselves - all individual microstates
are equally likely in this variational method. It simply
says that if total size and choice in the Hartley-Shannon
sense are conserved during the process of distributing
the tokens, then power-law distribution of component
size in the unique alphabet of tokens used is overwhelm-
ingly likely to emerge since it occupies the vast majority
of the microstates at any scale. In short, as programmers
assemble a software system from the constituent tokens,
no matter how or why they choose them, they are
overwhelmingly likely to finish up with a system which
obeys (16), and therefore (20) and (22).

Some other comments are useful.
1) The variational method assumes that ti, ai and T

are � 1. This turns out to be a very good approx-
imation for nearly all the data here. Components
with ai < 10 are relatively rare in software systems
because of the token overhead described shortly.

2) The variational method enforces that the total size T
and total H-S information I are kept constant whilst
the most likely solution is found. It should be noted
that these are not the actual size and information at
any point in time, but their eventual values defined
by their intended functionality in an ergodic sense.
In other words, if the same system was produced
many times independently, then for a particular
(T,I), the most likely distribution would be given
by (16).

3) Systems should evolve to preserve (16) since if a sys-
tem represented by (T,I) is modified and becomes
(T’,I’), it will still inhabit a landscape in which (16)
is overwhelmingly likely to be true, since it is true
at any scale. This will also be demonstrated shortly
on real data.

4) It is the very fact that the overall process does
not care about token meaning which leads to the
ubiquity of the behaviour reported here.

3 APPLICATION TO SOFTWARE SYSTEMS

3.1 Software components and tokens

Following the earlier discussion of the sorting algorithm,
we can write the unique alphabet of ai tokens in the ith

component of a software system of M components as

ai = af + av(i) (23)

where af is the alphabet of fixed tokens and av(i) is
the alphabet of invented tokens and is clearly dependent

6

on i, since programmers are free to create them as and
when desired.

It will be noted that af is taken as independent of com-
ponent whereas av(i) is dependent on the component.
To flesh this out a little, it is worthwhile introducing
a highly relevant property of programming languages
at this point, borne out by the data. Smaller components
tend to be dominated by tokens fixed by the programming
language and larger components tend to be dominated by
tokens invented by the programmer, for example constants
and identifier names. The reasons for this are first, the
fixed tokens of a language are limited in number and
a significant number of these are very rarely used, (for
example, the 10 trigraphs or the goto in ISO C). Second,
there is a certain token overhead which must be paid
in order to produce the simplest of syntactically-viable
components. As the component size grows, it is observed
that the fixed token alphabet rapidly stabilises whilst
the invented token alphabet grows without any such
limits. It is therefore a reasonable assumption to consider
the alphabet of fixed tokens as approximately constant
across components.

To support this conclusion, throughout these studies
the (variable/fixed) token ratio was found to be typically
0.4 or less for the small components (the value is 8/18 =
0.44 for the sorting algorithm described earlier) and typ-
ically greater than 5 for large components. In addition,
on average, the fixed token population does not vary
significantly with component size - linear regression of
af against ti on the components extracted in this study
revealed a gradient of around 7.0×10−4, in other words
it is effectively zero.

In other words, as the component size grows, the
fixed token alphabet is relatively constant in this dataset
whilst the variable token alphabet grows without any
such limits. It was also observed here that more than
95% of the components analysed used less than 30 fixed
tokens.

This affects the predicted shape of the distribution as
will be seen.

3.2 Predicted shape of the size distribution

In anticipation of applying this to software data, as well
as the pdf, it is conventional to consider the cdf (cu-
mulative distribution function) as used by [19] because
of its much more stable behaviour in the presence of
noise. This is defined as the probability c(x) that x has a
greater value than some specified value ai and is given
by integration of (20) as

ci(ai) ∼ a−β+1
i (24)

for β 6= 1. It is then possible to anticipate the ap-
proximate predicted shape of the size distribution as
follows. For smaller components, we have seen that it
is reasonable to assume that the number of fixed tokens
will tend to dominate the total number of tokens because

ilog c

log a
i

Fig. 2. The predicted cdf using the model described
in this paper. The cdf is predicted to flatten for smaller
components and to be power-law in ai for large ones.
Below ai ≤ 10, the approximations used break down.

of the fixed token overhead. In other words, af � av(i).
Equation (24) can then be written

ci ∼ (af)
−β+1(1 +

av(i)

af
)−β+1 (25)

In other words,

ci ≈ (af)
−β+1 (26)

which implies that ci will be tend to a constant for small
components on a log-log plot. For large components, using
the same arguments, the general power-law rule applies

ci ∼ (ai)
−β+1 (27)

The generic shape of the resulting predicted curve on
a log-log scale is shown in Figure 2.

In practice, this argument must be restricted to ai ≥ 10
or so to remain within the approximations used in the
variational method (T, ti � 1) and in the development
of the marginal pdf over the support of ti ≥ ai, (20).

3.3 Experimental verification
Such a profoundly simple but over-arching principle as
(16) and its testable forms (20) and (22) invites validation
to the highest possible degree. To cater for this, an
unusually large number of systems were analysed across
multiple languages in order to increase the statistical
relevance. Open source has had many benefits but one of
particular value to researchers is the enormous amount
of source code which can be freely downloaded, often
with excellent development history. In this study, 7 lan-
guages were chosen, Ada, C, C++, Fortran 77/90 (these
could reasonably be treated as two languages given
their fundamental differences but are counted as one
here), Java, Matlab and Tcl-Tk. This covered a very wide
variety of implementation areas and paradigms. In these

7

languages, around 115 ’packages’ (package and system
are essentially synonymous in this context) were down-
loaded by mining git archives, comprising just under
100 MSLOC (million source lines of code) over a bewil-
dering number of development areas and around half a
billion language tokens in all. These include for example,
the whole of the Linux kernel, openBSD, PHP, X11R7,
Postgresql, MySQL, R, the GNU distribution (counted as
one package but containing 1427 sub-packages of very
diverse nature) and Perl, all in C, the Ada validation
system (Ada), the KDE desktop (C++ also counted as
one package, but containing 311 sub-packages), and the
Java Virtual machine (Java).

As well as these, the author had access to some
commercial systems in Tcl, Fortran and C but these
only totalled around 1% of the total code analysed.
Individual package sizes spanned 4 orders of magnitude
varying from around 3 KSLOC (thousands of source
lines of code) to some 24 MSLOC (millions of source
lines of code) in the GNU distribution. It is believed that
this comprehensively samples the astonishingly varied
nature of software development. Parenthetically, since
the packages were extracted at random, it illustrates the
continuing popularity of C which accounts for 85% of all
the code analysed with Java 7%, C++ 3%, Ada 2% and
the remaining languages measured, 3% between them.

3.3.1 Lexical analysis
The extraction of tokens from a program is not a trivial
process and requires the development of tools which
mimic the front-end of compilers [1]. The minimum
requirements for a lexical analyser for each language
considered here, were
• The ability to extract tokens and to distinguish

between the two token forms, fixed and variable.
• The ability to recognise the start and end of a

component. This is simpler for non-OO languages
than OO languages because the latter admit nested
components or methods. In this analysis a useful ap-
proximation is that nested methods can be ignored.
This approximation is supported by the data.

The resulting generic tokeniser was written in C for
optimal performance to handle the seven languages
considered and also to exploit the well-known lex tool
for generating lexical analysers2. It comprises around
2000 lines of C and 1300 lines of lex and is included
with the reproducibility deliverables mentioned earlier.
There are certain difficult tokens in some languages
which are simply ignored by this generic analyser. This
excluded only a tiny fraction of components from the
analysis however. As a quality control check, the C and
Fortran tokenisers were checked against and found to
agree closely with existing full parsers written by the
author some years ago, both of which parsed the relevant
compiler validation suites correctly, (FIPS160 in the case
of ISO C90 and the ACVS in case of Fortran 77). In

2. , http://flex.sourceforge.net/manual/

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

p
i

ai (tokens)

pdf: 100 million lines of Ada,C,C++,Fortran,Java,Tcl,Matlab

Fig. 3. The measured pdf for all the systems analysed
here combined together.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 a
i

ai (tokens)

cdf: 100 million lines of Ada,C,C++,Fortran,Java,Tcl,Matlab

Fig. 4. The measured cdf for all the systems analysed
here combined together.

addition, a small number of test programs were checked
by hand. The resulting generic tokeniser is extremely
fast and can extract tokens at around the rate of 100,000
lines a second on a typical Linux desktop allowing
the analysis of the very large amounts of source code
considered here.

3.3.2 Results
Since the predicted marginal distribution as tested (20) is
scale-invariant and independent of any meaning, com-
bining all the data together into a single half billion token
super-system satisfactorily simulates the ergodic nature
of the prediction. The resulting pdf and cdf are shown
as Figures 3 and 4 respectively.

Figure 3 clearly shows qualitative agreement with the
predicted power-law behaviour in the larger values of
ai tending to flatten out at the lower values. It also
demonstrates the particular value of computing the cdf
as suggested by [19] in reducing the noise as can be seen
in Figure 4. This latter offers very satisfying support for
the model proposed here and will be used to measure

8

the slope in the power-law tail.
The predicted linearity of the power-law tail of Figure

4 was subjected to a standard test for significance using
the linear modelling function lm() in the widely-used R
statistical package [22]. This reported a very high degree
of linearity with a linear-fit correlation of 0.998 between
unique alphabet counts of 30 and 3000, a span of two
decades. The same analysis reports a slope of -2.164
+/- 0.003, which is in the range -2 → -3 reported for
most natural phenomena by [19], (corresponding to β =
-3.164 in (20)). The associated p-value, (the probability
of finding a dataset more unlikely than this one by
chance) is < 2.2 × e−16, an extremely emphatic result.
The corresponding output from R is shown in Table 1.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.1411 -0.0619 -0.0240 0.0504 0.4459 0.3033

Slope Std. error Adj R2 F DF p
-2.164 0.003 0.998 (5.55)× e5 1107 < (2.2)× e−16

TABLE 1
Residuals (row 1) and fit statistics (row 2) on Figure 4

between ai = 30 and 3000.

It can be concluded that this experiment very strongly
supports (20). The resulting behaviour implicit in Figure
4 contrasts nicely with the pure straight line predicted
for monkeys pounding on keyboards as described by
[16]. The ergodic nature of (20) simply accumulates
all possible programmers pounding on keyboards, but
with constraints on which keys can be used set by
the relevant programming language. As can be seen by
studying the animation included with the reproducibility
deliverables, the generic shape of (20) appears early on,
certainly within the first 1% of the total data represented
by Figure 4.

3.3.3 Individual packages and persistence

The scale invariant nature of (20) also works well with
individual packages as would be hoped providing token
counts are large enough for the requirements of the
variational method to be satisfied. To exemplify, Figure 5
shows a collage of the cdfs of some individual packages.
This includes small (8 - 90 KSLOC) , medium (150 - 400
KSLOC) and large (0.5 - 1.0 MSLOC) C packages and
medium and large C++, Fortran and Ada packages. Each
of these packages clearly shows the nascent signature of
the behaviour described by (20).

The behaviour is also persistent within a single pack-
age as is shown in Figure 6 for a package which doubled
in size in its life-cycle over several years from its first
release. Persistence is again expected from the scale-
invariant nature of (20) which is preserved as a system
moves from one power-law dominated landscape (T,I)
to another (T’,I’) during maintenance.

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

GTK+ 3.1.4 (C)

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

Evolution 3.1.1 (C)

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

Numerical Recipes in C

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

kdelibs 4.6.3 (C++)

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

LAPACK (F90)

 10

 100

 1000

 10000

 1 10 100 1000

S
a
m

p
le

s
 w

it
h
 v

a
lu

e
 >

 x

size x (tokens)

Ada Validation Suite

Fig. 5. cdfs of individual packages showing the broad
adherence to (16) across language and size. Top row,
GTK (C - large), evolution (C - medium); second row,
Numerical Recipes (C - small), KDE library (C++ - large);
Bottom row, LAPACK (Fortran - medium), Ada Validation
(Ada - large).

 10

 100

 1000

 1 10 100 1000

#
 C

o
m

p
o
n
e
n
ts

 w
it
h
 v

a
lu

e
 >

 a
i

ai (tokens)

Every 3rd C version in 27 versions

1st version
4th version
7th version

10th version
13th version
16th version
19th version

22nd version
25th version

Fig. 6. Although difficult to see in monochrome, power-
law behaviour is persistent. The first version of this system
is on the inside of the family of curves and then versions
appear monotonically out to the last version shown on the
outside.

3.3.4 Constant average component length

So far, (20) has been derived and then demonstrated em-
phatically on a very large dataset. However, the unique
alphabet ai is not easily visible to a casual observer as it
requires relatively sophisticated parsing of a language,
(and is the reason for the use of the word ’hidden’
in the title). The total number of tokens is much more
accessible as it is an unequivocal measure of the overall
size of a component and is very closely related to other
commonly used measures such as the line of code. It

9

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
o

ta
l
s
iz

e
 i
n

 t
o

k
e

n
s

Number of components

C Kingdom 20-60

Fig. 7. Illustrating the predicted linearity of number of
components (x-axis) against total number of tokens (y-
axis) for ai ∈ [20, 60] for 51 C packages totalling some 50
MSLOC.

is useful therefore to test (22) which predicts that total
component lengths are uniformly distributed for a fixed
unique alphabet. In other words, components of any length
with that unique alphabet are equally likely.. This in turn
implies that the average length of a component with that
unique alphabet will be constant so the total number of
tokens should be linear with the total number of components
with that alphabet for any package.

This is far from an obvious inference but again it can
be tested. 51 C packages totalling some 50 million lines
of C code from the main experiment were subjected to
the following repeated analysis. For a specified range,
ai ∈ [amin, amax], all components were extracted for each
package and the total number of components and the
corresponding total number of tokens for each package
calculated as a single data point. As an example Figure
7 shows all 51 data points calculated for the range ai ∈
[20, 60]. Each data point corresponds to a package, for
example the Apache package appears as the data point
(6248,1336715).

As predicted, Figure 7 exhibits strong linearity. This
was again tested using the lm() function of the R package
and the results shown as Table 2.

Min. 1st Qu. Median 3rd Qu. Max.
-426964 -122636 -104656 59782 1205887

Slope Adj R2 F DF p
123.900 +/- 0.089 0.9974 1.91× e4 49 < (2.2)× e−16

TABLE 2
Residuals (row 1) and fit statistics (row 2) on Figure 7.

 0
.3

 0.4

 0
.5

 0
.6

 0
.6

 0
.6

 0.7

 0
.7

 0.8

 0.9

50 100 150 200

5
0

1
0

0
1

5
0

2
0

0

Fig. 8. A contour plot of the adjusted R-squared fit value
produced by R as a function of the lower (x-axis) and
upper (y-axis) values of the unique alphabet ai. Figure
7 corresponds to the data point (20,60). The plot is
dominated by a white area where R-squared > 0.99

This calculation was then extended out for values of
amin = 10, .., 200, amax = amin, .., 200 in increments of 10
and the adjusted R-squared value for the lm() linear fit
function of R extracted for each (amin, amax) pair. The
range [10, 200] was chosen as being representative of the
low-noise part of Figure 3 whilst incorporating both the
flatter part and the power-law tail - it must be stressed
that the linear behaviour for average component size
predicted here is present whatever the actual values of
ai.

The result is shown in contoured form as Figure 8.
Note that since the lower bound must be less than the
upper bound, the half of the diagram below the diagonal
is filled in by symmetry for convenience.

Figure 8 shows that over the vast majority of the
ranges of ai computed on a dataset of some 250 million
tokens, that the adjusted R-squared value is exception-
ally close to 1. This very strongly supports the prediction
above that component size for a fixed range of ai is
distributed uniformly and that therefore the average
component size only depends on the range of ai and
is completely independent of the package, what it does,
or how big it is.

As a further test, 24 additional Fortran 90 packages
were downloaded and analysed which did not form
part of the main study. These included several CALGO3

algorithms. Extracting the total number of components
and total number of tokens for each package gave the
plot shown as Figure 9. Again, the result demonstrates
the expected approximate linearity and is shown in Table

3. http://calgo.acm.org/

10

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
s
iz

e
 i
n
 t
o
k
e
n
s

Number of components

F90 Kingdom

Fig. 9. The total length in tokens against the number of
components in a number of software packages all written
in the Fortran 90 programming language. The x-axis
represents the number of small components in various
packages and the y-axis is the total size of those small
components in the package in tokens.

3.

Min. 1st Qu. Median 3rd Qu. Max.
-226.46 -49.84 -12.44 40.83 422.84

Slope Adj R2 F DF p
37.735 +/- 1.868 0.947 408.3 22 < (1.076)× e−15

TABLE 3
Residuals (row 1) and fit statistics (row 2) on Figure 9.

Even though there are less than half the data points
of Figure 7, the fit is still a good one with adjusted R-
squared value of 0.95.

4 CONCLUSIONS

This paper presents several contributions:
• Extending the argument suggested in [11], [12] to

incorporate the principles of scale-invariance and
the Conservation of H-S Information, it is confirmed
that the probability pi of a component appearing
with ti tokens in any software system, whatever
its implementation details, should asymptote to the
following scale-invariant marginal distribution with
respect to the size of its unique alphabet of tokens
ai,

pA(ai) ∼ (ai)
−β (28)

• Experimental evidence for this is greatly extended to
cover almost 100 million lines of source code written
in seven programming languages. The associated p-
value matching the power-law tail to the prediction
is < (2.2)×e−16 over two decades, with an adjusted
R-squared value of 0.998, a very emphatic result
indeed. The resulting value of β is −3.164± 0.003.

• The variational method now makes clear the inti-
mate relationship between conservation principles,
power-laws and the symmetry of scale-free be-
haviour in discrete systems. It also suggests strongly
that the discrete system analogue of Conservation
of Energy in physical systems is Conservation of H-
S Information through the direct association of U
with I. The analogy is not exact however. In physical
systems, as [20] showed inter alia in her ground-
breaking paper, energy is conserved in all systems
with a Lagrangian which have the symmetry of
time invariance. In the case of H-S information, the
relationship between the conservation principle (H-
S information) and the symmetry, (scale invariance),
is in the form of a power-law probability distribu-
tion. Systems can exist which flout it but averaging
over many systems, the power-law behaviour in the
unique alphabet emerges emphatically as seen here.

• Another implication of Conservation of H-S Infor-
mation is that the average component size in a
package depends only on the unique alphabet ai
and not on package size, package functionality or
the implementation language. This was tested on a
large subset of the C systems analysed in the main
study and also 24 additional Fortran 90 packages not
in the main study with excellent statistical support
and adjusted R-squared values generally very close
to 1.

The main impact of the general principle of Conser-
vation of H-S Information or Choice presented here is
that it provides a theoretical underpinning for observed
properties which appear to be system independent and
indeed overwhelmingly likely. That such properties even
exist in a discipline such as software engineering which
encompasses a bewildering array of programming lan-
guages, design methodologies and implementation tools
is of itself very encouraging. In addition, it stresses
the role that the unique alphabet of a component may
play in exempting some of its properties from continual
technological overturn. For example, it is hoped that
this will extend to a better understanding of the role
of defects as touched upon in [11].

These findings have interesting implications for other
kinds of system in which Conservation of H-S Informa-
tion appears to play a fundamental role such as in the
genome which has a fixed alphabet of unique tokens,
but this will necessarily be considered as the subject of
a separate paper.

Finally, it will be re-iterated that the Conservation of
H-S Information and in particular its independence of
meaning appears to provide a vast scale-free underlying
power-law clockwork which the component size dis-
tributions of software systems at least, adhere to very
closely, independently of what they do, how big they
are, how they were produced or what technology was
deployed.

11

5 ACKNOWLEDGEMENTS

The author would like to thank his colleagues Michiel
van Genuchten and particularly Diomidis Spinellis who
in a parallel joint project illustrated just how easy it was
to automate the mining of vast amounts of open source
software which rapidly trebled the experimental dataset
used to verify the theory presented here. The author
would also like to thank the anonymous reviewers and
the Assistant Editor for very useful feedback in making
the mathematical development as self-evident as possi-
ble.

REFERENCES

[1] A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison-
Wesley, 1977.

[2] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Understand-
ing the shape of java software. OOPSLA ’06, 2006.
http://doi.acm.org/10.1145/1167473.1167507.

[3] D. Challet and A. Lombardoni. Bug propagation and debugging
in asymmetric software structures. Physical Review E, 70(046109),
2004.

[4] Colin Cherry. On Human Communication. John Wiley Science
Editions, 1963. Library of Congress 56-9820.

[5] D. Clark and C. Green. An empirical study of list structures in
lisp. Communications of the ACM, 20(2):78–87, 1977.

[6] G. Concas, M. Marchesi, S. Pinna, and N.Serra. Power-laws in a
large object-oriented software system. IEEE Trans. Software Eng.,
33(10):687–708, 2007.

[7] A.M. Glazer and J.S. Wark. Statistical Mechanics. A survival guide.
OUP, 2001.

[8] A.A. Gorshenev and Yu. M. Pis’mak. Punctuated equilibrium in
software evolution. Physical Review E, 70:067103–1,4, 2004.

[9] M. Halstead. Elements of Software Science. Elsevier, 1977. ISBN
0-07-707640-0.

[10] R.V.L. Hartley. Transmission of information. Bell System Tech.
Journal, 7:535, 1928.

[11] L. Hatton. Power-law distributions of component sizes in general
software systems. IEEE Transactions on Software Engineering,
July/August 2009.

[12] L. Hatton. Scientific computation and the scientific method: a
tentative road map for convergence. In IFIP / SIAM / NIST Work-
ing Conference on Uncertainty Quantification in Scientific Computing,
pages 123–38, August 2011.

[13] D.C. Ince, L. Hatton, and J. Graham-Cumming. The case
for open program code. Nature, 482:485–488, February 2012.
doi:10.1038/nature10836.

[14] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos.
Power laws in software. ACM Trans. Softw. Eng. Methodol.,
18(1):2:1–2:26, October 2008.

[15] Michael Mitzenmacher. Dynamic models for file sizes and double
pareto distributions. Internet Mathematics, 1(1):305–333, 2002.

[16] Michael Mitzenmacher. A brief history of generative models
for power-law and lognormal distributions. Internet Mathematics,
1(2):226–251, 2003.

[17] J. Mössinger. Software in automotive systems. IEEE Software,
27(2):2–4, March/April 2010.

[18] Christopher R. Myers. Software systems as complex networks:
Structure, function and evolvability of software collaboration
graphs. Physical Review E, 68(046116), 2003.

[19] M. E. J. Newman. Power laws, pareto distributions and zipf’s
law. Contemporary Physics, 46:323–351, 2006.

[20] E. Noether. Invariante variationsprobleme. Nachr. D. KÃ¶nig.
Gesellsch. D. Wiss. Zu GÃ¶ttingen, Math-phys. Klasse 1918, pages
235–257, 1918.

[21] A. Potanin, J. Noble, M. Frean, and R. Biddle. Scale-free geometry
in OO programs. Comm. ACM., 48(5):99–103, May 2005.

[22] R Development Core Team. R: A Language and Environment for
Statistical Computing. Vienna, Austria, 2011. ISBN 3-900051-07-0.

[23] P.K. Rawlings, D. Reguera, and H. Reiss. Entropic basis of the
pareto law. Physica A, 343:643–652, July 2004.

[24] D. Rousseau. The Software behind the Higgs Search. IEEE
Software, 29(5):p. 11–15, 2012.

[25] R. Sedgewick. Algorithms in C. Addison-Wesley, 1990.
[26] C.E. Shannon. A mathematical theory of communication. Bell

system technical journal, 27:379,423, July 1948.
[27] C.E. Shannon. Communication in the presence of noise. Proc. I.

R. E., 37:10, 1949.
[28] M.L. Shooman. Software Engineering. McGraw-Hill, 2nd edition,

1985.
[29] A. Sommerfeld. Thermodynamics and Statistical Mechanics. Aca-

demic Press, 1956.
[30] G.K. Zipf. Psycho-Biology of Languages. Houghton-Miflin, 1935.

