"A long hard look at the effects of defect on scientific and other software"

by

Les Hatton

Oakwood Computing Associates, Surrey, U.K. and the Computing Laboratory, University of Kent
lesh@oakcomp.co.uk

Version 1.1: 15/Feb/2001

©Copyright, L. Hatton, 2001-
A personal view of software failure

1990-92:
T1: ~10 static faults/KLOC in F77, C. (C++ worse)

1990-1993:
T2: 9-version dynamic experiment. Only 1 sig. fig. agreement left at end.

1995:
Formal methods => 3:1 better Static fault highly correlated to dynamic failure.

1995-1999:
Win’95 1 defect every 42 mins. Mac - 1 defect every 188 mins. Linux - Almost never.

1984-1988:
Porting same F77 package gave 4 sig.fig. agreement on different platforms.

1989-1995
Defect Density

1996:
O-O/C++ has 2-3 times corrective maintenance cost.

1997:
Compression and accuracy

1998-1999:
Why do we have so much repetitive failure in software?

1999-:
Necessary and unnecessary complexity

1995-1996:
100% statement coverage often implicated in high-integrity systems.
Preparing the ground

Fixing the definitions

- A fault is a statically detectable property of a piece of code or a design.
- A failure is a fault or set of faults which together cause the system to show unexpected behaviour at run-time.
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- 1990-1996: Failure experiments
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
1984-1988: Portability

The Seismic Kernel System (SKS)

- About a million lines of Fortran 77 developed for processing seismic data
- Ported to 10 different architectures, Cray down to Data General with attached FPS array processor. Porting time about 2 weeks.
- Portable graphics based on GKS
- Inhouse portable meta description language for array processing.
- Cost about $3million to develop
The Seismic Kernel System

- Achieved 4 significant figures of agreement (eventually*) across all architectures on typical seismic data processing benchmarks. Single precision floating point arithmetic used, 32-38 bit.

* The following statement cost 2 of those until it was found in the middle of a 2-D Fourier Transform:

 if (ABS(a-b) .gt. 1E-3) then ...
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- 1990-1996: Failure experiments
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
The T-experiments

Multi-industry study using static inspection, 1990-1992

... Nuclear E-S Aerospace Control ...

Single-industry study using N-version techniques, 1990-1993

Earth Science
1988-1997: The T1 Fault experiments

Stages

- Observed many repeating faults in development of SKS
- Developed F77 parsing engine to study other packages, 1988-1992
- Developed C parsing engine to study similar problems in different language, 1990-1994
- Measured around 100 major systems 1988-1997
- Developed more advanced C parsing engine 1996-2000, restart experiments on embedded control systems
Fault frequencies in C applications

Weighted faults per 1000 lines.

Average of 8 applications
Fault frequencies in Fortran 77 applications

Weighted faults per 1000 lines.

General

Same application area one at 140 / KLOC and one at 0 / KLOC

Average of 12

Average of 12
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- **1990-1996: Failure experiments**
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
1990-1996: Failure experiments

Stages

- An observation: Failure experiments are REALLY expensive compared with fault experiments
- “T2” experiment, 1990-1993
 - Funded by Enterprise Oil plc in the UK
 - Compared the output of 9 packages all in Fortran 77 developed independently
 - Carried out with a colleague, Andy Roberts
T2 details

- 9 independently developed commercial versions of same ~750,000 F77 package of signal processing algorithms.
- Same input data tapes.
- Same processing parameters, (46 page monitored specification document).
- All algorithms published with precise specification, (e.g. FFT, deconvolution, finite-difference wave-equation solutions, tridiagonal matrix inversions and so on).
- All companies had detailed QA and testing procedures.
Basic goals of T2 experiment

- Overall goals were:
 - To estimate the magnitude of disagreement.
 - To see what form disagreement took.
 - To identify poorly implemented processes.
 - To attempt to improve agreement by feedback confirming nature of fault.
 - To preserve complete confidentiality.
Analysis goals were:

- Analyse at 14 "primary" calibration points and 20 "secondary" calibration points.
- Analyse data in multiple windows.
- Use two sets of independently developed analysis software to improve confidence.
Similarity v. coordinate: No feedback
Defect example 1: feedback detail
Similarity v. coordinate: Feedback to company 8
Defect example 2: feedback detail
Similarity v. coordinate:
Feedback to company 3
The end product: 9 subtly different views of the geology
T2 Results

- The accompanying slides illustrate:
 - Only 1-2 significant figures agreement after processing.
 - Disagreement is non-random and alternate views seem equally plausible.
 - Feedback of anomalies along with other evidence confirms source of disagreement as software failure.
A summary of 10 years of failure experiments

<table>
<thead>
<tr>
<th>Seismic processing software environment</th>
<th>Number of significant figures agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bit floating point arithmetic.</td>
<td>6</td>
</tr>
<tr>
<td>Same software on different platforms, same data.</td>
<td>4</td>
</tr>
<tr>
<td>Same software on same platform, 5-1 lossy compression.</td>
<td>3-4</td>
</tr>
<tr>
<td>Same software subjected to continual 'enhancement'</td>
<td>1-2</td>
</tr>
<tr>
<td>T2: different software, same specs, same data, same language, same parameters.</td>
<td>1</td>
</tr>
</tbody>
</table>

- Portability degradation
- Compression degradation
- Maintenance degradation
- Diversity degradation
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- 1990-1996: Failure experiments
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
1996-1997: Correlating fault and failure

Stages
- How and when do faults fail?
- An indirect relationship - the Heathrow air-traffic control system and others
Where and how do faults fail historically?
Mean time to fail in Adams (1984)
Where and how do faults fail historically?

Data derived from CAA CDIS

This study shows that statically detectable faults do in fact fail during the life-cycle of the software.
Where and how do faults fail historically?

CAA CDIS air-traffic system

- Pre-delivery:
 - Formal: 19.6
 - Informal: 0.58
- Post-delivery:
 - Formal: 21
 - Informal: 1.61
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- 1990-1996: Failure experiments
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
Points to consider

- Software Process
- Development paradigms, for example OO
- Control process feedback

1995-2000: Does paradigm shift help?
Points to consider

- There is an inherent belief that a good process implies a good product
- Why is Linux so good?
 - Linux is categorically CMM level 1 so is the CMM wrong or does Open Source development have important properties that we don’t understand well yet?
 - Is the reliability of Linux incremental?
Software Process and Linux

Mean Time Between Failures of various operating systems

W'95, Macintosh 7.5-8.1, NT 4.0, Linux, Sparc 4.1.3c
Relative time to fix defects in C++
v. Pascal (Humphrey)

- Code review
- Unit testing
- After unit testing

<table>
<thead>
<tr>
<th>Method</th>
<th>Time to Fix Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal</td>
<td>5</td>
</tr>
<tr>
<td>C++</td>
<td>50</td>
</tr>
</tbody>
</table>
Measurement feedback on OO development, (Hatton)
Measurement feedback on OO development

Summary of known measurements

- C++ OO systems have comparable defect densities to conventional C or Pascal systems.

- Each defect in a C++ OO system takes about twice as long to fix as in a conventional system. This is true for both simple defects AND difficult ones. The whole distribution is right shifted.

- Components using inheritance have been observed to have 6 times the defect density.

How much of this is attributable to C++ is unknown.
Control Process feedback - the essence of engineering improvement

If you want to improve reliability, measure and analyse failures.
Overview

- **Paradigm shift is characterised by:-**
 - Fashion / marketing focus
 - Creativity driven
 - The complete absence of measurement
 - Maximises things the engineer CAN do.

- **Control process feedback is characterised by:-**
 - Engineering focus
 - Measurement and analysis of failure
 - Ruthless elimination of known failure modes
 - Maximises things the engineer can NOT do.
Overview

- 1984-1988: Portability experiments
- 1988-1997: Fault experiments
- 1990-1996: Failure experiments
- 1996-1997: Correlating fault and failure
- 1995-2000: Does paradigm shift help?
- 2001-: Some interesting questions
2001-: Some interesting questions

Points to consider

- Can we reverse or even halt linguistic decay?: Aristotelians v. Babylonians
- Why do defects cluster and/or why are they not linearly distributed?
- Necessary and unnecessary complexity
Linguistic decay

In my career, I have been forced to write programs in:-

- Focal
- Atlas Autocode
- Algol
- Assembler
- Fortran 66, 77
- C
- Pascal
- Ada (briefly)
- C++
- Java
- Various scripting languages, Perl, Tcl/Tk, Bash, Javascript
- C again, (this time from choice)
Why languages can’t improve

Using the model of control process feedback, we see that the feedback stage is crippled by the “shall not break old code” rule or “backwards compatibility” as it is more commonly known.
An example: C itself

<table>
<thead>
<tr>
<th>Type of poorly-defined behaviour</th>
<th>ISO C90</th>
<th>ISO C99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>Undefined</td>
<td>97</td>
<td>191</td>
</tr>
<tr>
<td>Implementation-defined</td>
<td>76</td>
<td>111</td>
</tr>
<tr>
<td>Locale-specific</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>366</td>
</tr>
<tr>
<td>Defect reports</td>
<td>119</td>
<td>???</td>
</tr>
</tbody>
</table>
Even new languages struggle:-

All the following languages inherit at least some of C’s built-in defects often most:-

- C++: In ISOC++99, we also find the words:-
 - Undefined, 1825 times
 - Unspecified, 1259 times.
- Javascript: Even precedence was not defined explicitly
- Java: Removed some defects, added some new ones
- Perl: 21 levels of precedence ...

IEC 1131: another new standard:

- Removes need to declare variables first ‘for programmer flexibility’
Defect clustering

Note the non-linear growth. Why does it grow so slowly?
Necessary and unnecessary complexity

- In the Knight-Leveson (1986) experiment:-
 - 27 versions of the same algorithm were developed independently in Pascal
 - The smallest had around 300 lines and the largest was over 1000 lines.
 - The most reliable did not fail in 1 million trials, the least reliable failed nearly 10,000 times.

- AT&T in the ‘70s and ‘80s:-
 - it was frequently observed that rewriting the same algorithm 2 or 3 times reduced the size by about the same factor, e.g. diff.
To conclude:

- Numerical accuracy in simulations is probably not as good as we believe
 - Software failure is a significant factor
 - Regular maintenance degrades accuracy
 - Moving platforms degrades accuracy
 - Diversity is an excellent method for identifying long standing defects
Overall Summary

To conclude:

- On the negative side
 - We are ignoring systematic errors in our software and known ways of detecting them
 - Our languages do not seem to be improving. They just change
 - There is too little measurement based feedback
 - Different defect types have different signal-to-noise

- On the positive side
 - There are some exciting possibilities for improvement
References