
Title Slide

OA KW OOD COM PUTING - SURV IV A L A ND A V OIDA NCE STRA TEGIES FOR SOFTW A RE FA ILURE

.

"Paradigm shift or measurement based feedback ?"

JACC’ 99, Oxford, 18th Sept, 1999

by

Les Hatton

O a k w o o d C o m p u t in g , S u r r e y , U .K .

a n d

C o m p u t in g L a b o r a t o r y , U n iv e r s i t y o f K e n t , U K

le s h @ c y b e r s h e d .c o .u k

V ersion 1.0: 08/S ep /1999

© C op yright, L.Hatton, 1999

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 2) © OC Copy right , 1999

Overview

v Introduction
v Evidence for repetitive failure
v Preventing repetitive failure
v Paradigm shift or measurement ?
v Other concerns - diagnosis

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 3) © OC Copy right , 1999

A growing problem

The amount of software in consumer electronic products is
currently doubling about every 18 months.

• Line-scan TVs have ~250,000 lines of C.

• There are around 200,000 lines of C in a car.

• Most consumer devices, washing-machines and so on have a
few K of software.

• The Airbus A340 and Boeing 777 are totally dependent on
software, (more later...).

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 4) © OC Copy right , 1999

Problems - real or imagined ?

Airbus A340 G-VAEL 16/09/94, Heathrow:

• Software error calculated fuel incorrectly.

• Both screens went blank, “ Please wait ...” .

• Plane turned right when instructed to turn left.

• Plane descended at 9 degrees when instructed to descend at
3 degrees.

Not all of these yet believed fixed.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 5) © OC Copy right , 1999

Problems - real or imagined ?

and ships ...:

• The ultimate high-tech USS Yorktown was left dead in the
water off the coast of Virginia for an hour on a weekend in
September, 1997 due to software failure

• The ship had to be rebooted.

• (Perhaps there should be an international flag signal for
“ Please wait ...”).

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 6) © OC Copy right , 1999

Problems - real or imagined ?

Cars too ...:

• 22/July/1999. General Motors has to recall 3.5 million vehicles
because of a software defect. Stopping distances were
extended by 15-20 metres.

• Federal investigators received almost 11,000 complaints as
well reports of 2,111 crashes and 293 injuries.

• Recall costs ? (An exercise for the reader).

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 7) © OC Copy right , 1999

not forgetting ...

Ariane 5 :-(

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 8) © OC Copy right , 1999

How Ariane 5 failed ...

Actuator (steering) software actually written in Ada, but it is
equivalent to the following C code:

short s;

double d;

...

s = d;

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 9) © OC Copy right , 1999

Anatomy of another big bug ...

In Ariane 5, the following sequence occurred:-

• A 64-bit floating point number was forced into a 16-bit integer
in a non-critical component

• When it overflowed, the programming language (Ada)
generated an exception which was allowed to shut down the
system including critical components for actuator control

• The system had twin-channel redundancy but the same
software was running in each channel.

• If a sloppier language had been used, there would have been
no crash

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 10) © OC Copy right , 1999

The PC picture ...

System Defect Rate % reboots

W’95 + Office 1every 42
minutes

28%

Mac OS + Office 1 every 188
minutes

56%

Unix (Software
development)

< 1 per year 100%

Linux (Various) None
experienced in 2

years

-

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 11) © OC Copy right , 1999

A few more recent vignettes ...

• Aug. 1999: MCI Worldcom’ s international frame relay
network suffers major software collapse.

• Aug. 1999: ERNIE, (UK premium bond generator) had
software defects causing thousands of genuine winners not to
be paid anything.

• Sep. 1998: LTCM, a financial house in New York lost 44% of
fund value due to defects in computer model September,
1998.

• Jul. 1998: Northern Examination Board, UK: The exam
results of 100,000 students were affected by defects in the
marking software, July 1998

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 12) © OC Copy right , 1999

Overview

v Introduction
v Evidence for repetitive failure
v Preventing repetitive failure
v Paradigm shift or measurement ?
v Other concerns - diagnosis

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 13) © OC Copy right , 1999

An observable fact

Software systems are unique amongst engineering systems
in that their behaviour is dominated by repetitive failure.
Why ?

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 14) © OC Copy right , 1999

Definitions of fault and failure

Software failure is characterised by:-
– Fault

u Static property (identified before run-time)

u Can be identified in either design or source code as a

‘ mistake’

u Not all faults fail

– Failure
u Dynamic property (identified at run-time)

u Defined to be difference between actual and expected run-

time behaviour.

u Every failure is caused by at least one fault.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 15) © OC Copy right , 1999

The relationship between fault and failure

All faults

Those faults
which fail

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 16) © OC Copy right , 1999

How do faults lead to failure ?

v Ed Adams of IBM (1984) found that
– ~33% of all faults only failed < once every 5000 execution years
– The most common failures, (> once every 5 years) were caused by

only 2% of the faults.
– Any correction had about a 15% chance of introducing a problem at

least as big into the system.
v Pfleeger and Hatton (1997) found (amongst other things)

that:-
– static faults and dynamic failure were highly correlated in a high

reliability system.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 17) © OC Copy right , 1999

Overview

v Introduction
v Evidence for repetitive failure
v Preventing repetitive failure
v Paradigm shift or measurement ?
v Other concerns - diagnosis

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 18) © OC Copy right , 1999

Control Process feedback - the essence of engineering improvement

Process Product

Measure samples
of product for

quality

Feed-back into
Process to
improve it

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 19) © OC Copy right , 1999

Language standardisation ...

v Language standardisation disobeys control process feedback
in several important ways:-
– It is characterised by unconstrained creativity
– It completely ignores measurement
– The ‘ must not break old code’ rule means feedback is crippled so

although things are continually added, nothing ever gets taken out in
practice.

– It is a political as well as a technical process. Daft things get left in.
A control process engineer would conclude that languages can

never get better.

P
aradigm

 v. m
easurem

ent: v
. 1

.0
, 0

8
/S

e
p

/1
9

9
9

, (slid
e

 2
0

)
©

 O
C

 C
o

p
y

rig
h

t, 1
9

9
9

O
ccurrence rates in F

77 applications

Weighted faults per 1000 lines.

0 5

1
0

1
5

2
0

2
5

general

elc-eng

EarthSci

parsing

CadCam

ChemMod

EarthSci

elc-eng

fld-eng

mch-eng

mch-eng

nuc-eng

nuc-eng

oper-rs

CadCam

the-phys

Geodesy

Aerospace

general

P
aradigm

 v. m
easurem

ent: v
. 1

.0
, 0

8
/S

e
p

/1
9

9
9

, (slid
e

 2
1

)
©

 O
C

 C
o

p
y

rig
h

t, 1
9

9
9

D
ependence on know

n fault m
odes in C

 applications

W eighted faults per 1000 lines.

0 5

1
0

1
5

2
0

2
5

Graphics

General

Elec-eng

Design

System

Cont rol

Database

Graphics

Parsing

Parsing

Insurance

Ut ilit ies

Ut ilit ies

Ut ilit ies

Cont rol

Comms

Comms

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 22) © OC Copy right , 1999

Failure of statically detectable faults

Data deriv ed f rom CAA CDIS
R

e
s

id
u

a
l

s
e

ri
o

u
s

 s
ta

ti
c

fa
u

lt
s

p
e

r
K

L
O

C

0

0.5

1

1.5
2

2.5

3

3.5

4

Average

dynamic

test ing

Thorough

dynamic

test ing

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 23) © OC Copy right , 1999

Overview

v Introduction
v Evidence for repetitive failure
v Preventing repetitive failure
v Paradigm shift or measurement ?
v Other concerns - diagnosis

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 24) © OC Copy right , 1999

Overview

v Paradigm shift is characterised by:-
– Fashion / marketing focus
– Creativity driven
– The complete absence of measurement
– Maximises things the engineer CAN do.

v Control process feedback is characterised by:-
– Engineering focus
– Measurement and analysis of failure
– Ruthless elimination of known failure modes
– Maximises things the engineer can NOT do.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 25) © OC Copy right , 1999

Overview

v Three measurement-driven lessons:-
– Defect density is relatively independent of programming language
– Defect density is almost constant with time in the last two decades
– Independent implementations of the same algorithm in the same

programming language can vary in size by factors of at least 3.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 26) © OC Copy right , 1999

1. Defect density is relatively independent of language

Source Language Errors /
KLOC

Formal
methods
used

Life-cycl e

Siemens - operat ing systems A ssembl ers 6-15 No Rel ease

IPL - l anguage parser C 20-100 No Dev. onl y

NA G - scient if ic l ibraries Fort ran 3 No Rel ease

Praxis - A ir-t raf f ic cont rol C 1.25 Y es Rel ease

Ll oyds - l anguage parser C 1.4 Y es Rel ease

IBM cl eanroom V arious 3.4 Part Rel ease

IBM normal V arious 30 No Rel ease

Loral - IBM M V S V arious 0.5* Part Projected

Basil i & Perricone (1984) Fort ran 6-16 No Rel ease

Compton & Withrow (1990) A da 2-9 No Rel ease

Part of a worldwide survey of defect densities:

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 27) © OC Copy right , 1999

2. Defect density is relatively constant with time

Errors per 1000 lines at NASA Goddard 1978-1990

E
rr

o
rs

 p
e

r
1

0
0

0
 l

in
e

s

0

2

4

6

8

10

12

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

Low

Average

High

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 28) © OC Copy right , 1999

3. Independent implementations vary dramatically

v In the Knight-Leveson (1986) experiment:-
– 27 versions of the same algorithm were developed independently in

Pascal
– The smallest had around 300 lines and the largest was over 1000

lines.
– The most reliable did not fail in 1 million trials, the least reliable

failed nearly 10,000 times.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 29) © OC Copy right , 1999

The OO paradigm shift

v Object-Orientation and its implementation languages are a
true paradigm shift characterised by:-
– Great certainty that it is ‘ the way to go’
– Almost no measurement
– Enormous marketing

It may well be the way to go but without measurement based
feedback, we simply don’ t know. Here are some recent
measurements:-

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 30) © OC Copy right , 1999

Measurement feedback on object-orientation, (Humphrey 1995)

Relat iv e t ime t o f ix defect s in C++
v . Pascal (Humphrey)

R
e

la
ti

v
e

 t
im

e
 t

o
 f

ix

0

10

20

30

40

50

60

Code

review

Unit

test ing

Af ter

unit

test ing

Pascal

C++

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 31) © OC Copy right , 1999

Measurement feedback on object-orientation, (Hatton, 1998)

P
e

rc
e

n
t

o
f

a
ll

 f
ix

e
s

0

10

20

30

40

50

60

70

80

90

100
<

 1
 h

o
ur

<
 2

 h
o

ur
s

<
 5

 h
o

ur
s

<
 1

0
 h

o
ur

s

<
 2

0
 h

o
ur

s

<
 5

0
 h

o
ur

s

<
 1

0
0

 h
o

ur
s

<
 2

0
0

 h
o

ur
s

C++

C

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 32) © OC Copy right , 1999

Measurement feedback on object-orientation

Summary of known measurements

• C++ OO systems have comparable defect densities to
conventional C or Pascal systems.

• Each defect in a C++ OO system takes between 2 and 3 times
longer to fix than a conventional system. This is true for both
simple defects AND difficult ones. The whole distribution is
right shifted.

• Components using inheritance have been observed to have 6
times the defect density, (Shepherd & Cartwright, 1998).

How much of this is attributable to C++ is unknown.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 33) © OC Copy right , 1999

Overview

v Introduction
v Evidence for repetitive failure
v Preventing repetitive failure
v Paradigm shift or measurement ?
v Other concerns - diagnosis

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 34) © OC Copy right , 1999

Diagnosis

One of the central ways of improving feedback is good failure
diagnosis. However, several factors inhibit diagnosis

• System complexity and coupling

• Engineer over-optimism leading to poor diagnostics and
hence to poor diagnosis

• and measurement suggests, increasingly complex paradigms.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 35) © OC Copy right , 1999

Diagnosis

D i a gn ost i c

D i sta n ce

D i a gn ost i c

Q ua l i ty

Difficult

Easy

Moderate

Moderate

Poor Good

Close

Distant

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 36) © OC Copy right , 1999

Moderate, (distant/good)

An example from real life, Airbus A320 AF319, 25/8/88, (Mellor
(1994)):-

• MAN PITCH TRIM ONLY, followed in quick succession
by ...

• Fault in right main landing gear

• Fault in electrical flight control system computer 2

• Fault in alternate ground spoilers 1-2-3-5

• Fault in left pitch control green hydraulic circuit

• Loss of attitude protection

• Fault in Air Data System 2

• Autopilot 2 shown as engaged when it was disengaged

• LAVATORY SMOKE

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 37) © OC Copy right , 1999

Difficult, (distant/poor)

“ Please wait ...”

• This appeared on the pilot’ s and co-pilot’ s main console on
Airbus A340 G-VAEL in Sept, 1994 over Heathrow.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 38) © OC Copy right , 1999

Difficult, (distant/poor)

“ Please wait ...”

• An acceptable substitute might have been:-

“ The Flight Management System has collapsed, rebooting
will take slightly less than N of your Earth minutes. Try
whistling.” .

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 39) © OC Copy right , 1999

Moderate, (close/poor)

“ System stressed ...”

• This appeared on the cash registers of the author’ s local pub.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 40) © OC Copy right , 1999

Moderate, (close/poor)

“ System stressed ...”

• An hour of exciting discussion about communication
protocols, deadlocks and such later, the author and friend
realised an acceptable substitute might have been:-

“ Printer out of paper” .

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 41) © OC Copy right , 1999

Moderate, (close/poor)

“ Error -23009: there are already more than 64 TCP or UDP
streams open {tcp:104}”

• This appeared on the screen of the author’ s new Macintosh
G3 desktop running Apple’ s latest and greatest version of
OS 8, (“ the computer for the rest of us”).

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 42) © OC Copy right , 1999

Moderate, (close/poor)

“ Error -23009: there are already more than 64 TCP or UDP
streams open {tcp:104}”

• Two desolate hours later the author realised that an
acceptable substitute might have been:-

“ Modem not responding” .

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 43) © OC Copy right , 1999

Moderate, (close/poor)

“ Button push ignored”

• This appears on the Flight Management System of a
McDonnell-Douglas MD-11, (Drury (1997))

It is not clear what the programmer is trying to convey.
“ Paris is the capital of France” would have been equally
useful.

• The pilot also noted “ The airplane [computer system]
manuals were written as though by creatures from
another planet” .

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 44) © OC Copy right , 1999

Documentation difficulties

Speaking of other planets, note the following excerpt from
IBM OS Data management ...

• “ If the control password has read without password
protection, its secondary passwords must also have read
without password protection. A request for a read only or for
a read write secondary password will result in a read without
password secondary password. If a read without password
control password is changed to either a read only or read
write control password , all its secondary passwords will
automatically become read write secondary passwords.”

Imagine trying to diagnose a failure back to a fault in this
requirement.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 45) © OC Copy right , 1999

Moderate, (close/poor)

“ Line 23: Incompatible types”

• Typical C compiler speak.

• The annoying thing here is that the compiler writer knows
precisely what the types are but is determined to bring a little
excitement into the programmer’ s sad, miserable life.

• When the programmer searches the ISO C standard for
enlightenment ...

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 46) © OC Copy right , 1999

Compatible types, oh joy ...

v The ISO C standard states in essence:-
– Compatible types are the same, but compatible types need not be

identical.
v Now the Oxford English Dictionary states:-

– Identical = the same.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 47) © OC Copy right , 1999

Easy (close/good)

Dereference pointer contents 0x0 at

strlen(...) called from

line 126 of myc_constexpr.c called from

line 247 of myc_evalexpr.c called from

line 2459 of myc_expr.c

This is called a stack trace. It points unerringly at the responsible
code line and usually takes a matter of moments to fix.

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 48) © OC Copy right , 1999

The reasons for repetitive failure

The following factors very commonly appear:-

• We don’ t learn from our mistakes

• We are ruled by unconstrained creativity i.e. fashion, rather
than sound engineering

• Software engineers expect their systems to work rather than
accepting their inevitable failure and planning accordingly

• Paradigm shifting appears to be making diagnosis more
difficult

• Software systems are getting much larger and more tightly
coupled in general

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 49) © OC Copy right , 1999

Repetitive failure in the outside world

v Just to show that reluctance to learn isn’ t solely the preserve of
software engineers ...
– The DC-10 cargo door saga

u In the six months prior to the dreadful crash of the Turkish

Airlines DC-10 in Paris in March 1974, there had been no less

than 1000 cargo door incidents amongst the then 100 strong

fleet of DC-10s. They were disregarded.

u In this incident, the cargo door fell off, and the resulting de-

pressurisation caused the cabin floor to collapse severing

vital control cables..

Paradigm v. measurement: v. 1.0, 08/Sep/1999, (slide 50) © OC Copy right , 1999

Feedback in action ...

