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Abstract

This short paper describes the implementation of a well-known suffix-stripping
algorithm. This implementation is available under the latest version of the GNU
public licence.



0.1 Overview

In bibliographic indexing, it is very helpful if derivatives of words can be
reduced to a common stem, for example, runs, running could both usefully be
reduced to the stem run. For English, one of the standard ways of doing this is
the algorithm described by [1]. This paper describes an implementation of this
algorithm.

0.2 Implementation

The algorithm is relatively complex and has been implemented as a C function
for good performance. There are three source files in the package along with
the infrastructure to repeat the regression tests. The files are:-

• stem proto.h: the interface prototype include file.

• chance stem.c: the function wordStem() and some supporting functions.

• test wordstem.c: a test harness for the function wordStem()

• teststem.txt: a list of all the words and their stems from the original paper.

• teststem.out: a regression output which should not be changed.

• regress stem.sh: a Bourne shell script which makes and then runs the
regression tests.

• README STEM and COPYRIGHT files.

The package contains around 800 lines of source code.

0.2.1 Targets

This package should run without change on Linux and Windows although it
was developed under Linux.

0.2.2 Running the regression tests

Simply enter

% regress_stem.sh

This will make the package and run the regression test. It will report if any
differences are found.

It should be noted that the package correctly runs each section of the original
paper [1] but in the paper, the examples were mostly for a single step of the
algorithm. The output of the regression tests has all steps in the algorithm
included. There are therefore minor changes from the list in the paper but
these have been verified as being correct for the all step approach.
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0.3 Timing

The algorithm is quite complex but the timings on modern PCs are very impres-
sive. To stem every word in ”The Adventures of Sherlock Holmes” from project
Gutenberg, a substantial text, takes just over 5 seconds on a 2Ghz Athlon PC.

0.4 Use

The interface is as follows:-

int wordStem(
char * input_word,
char * output_stem
);

The output value is the measure. [1] defines the measure as follows:-

measure As [1] points out, every English word can be reduced to the canon-
ical form C?[VC]{0,m}V?, using the notation that C is a string of at least 1
consonant, V is a string of least 1 vowel, ”?” denotes optional, [...] is a grouping
and {0,m} denotes repetition from 0 up to m times. m is the measure and is
used to apply various suffix stripping rules.

The function can be used as follows:-

#include "stem_proto.h"
...
int measure;
char string[BUFSIZ];
char stem[BUFSIZ];
...
measure = wordStem( string, stem );
...

0.4.1 Algorithm departures

The only departure from the original paper of which the author is aware is the
treatment of the letter y. In the paper, this is a consonant unless proceeded
by a non-vowel in which case it is a vowel. This affects words such as syzygy
for example. In this implementation, this subtlety is ignored in the interests of
simplicity
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