
Testing the value of checklists in code inspections

Les Hatton
CISM, University of Kingston∗

July 4, 2007

Abstract

Checklists form an important part of the fabric of code and design
inspections. Ideally, they are intended to improve the efficiency in the
sense of number of faults found per inspection hour by highlighting known
areas of previous failure. In practice, although the benefit of using them
has been previously quantified by some sources, the statistical robustness
of the conclusions has not been so commonly represented. In this paper,
the effectiveness of checklists is subjected to formal statistical testing using
data collected from 308 inspections in workshops for industrial engineers
in the last three years. No evidence was found to support the view that
checklists made a significant difference in these inspections whether the
inspector was experienced or not.

Further analysis revealed that individual inspection performance varied
by a factor of 10 in terms of faults found per unit time and individuals
found on average about 53% of the faults. Two-person teams found on
average 76% of the faults.

1 Overview

Software quality remains an outstanding challenge for software practitioners in
the 21st century. Systems still fail all too often and there is considerable public
disquiet at the cost of failed projects, [14]. Unfortunately, software development
is a very rapidly moving discipline and is often not well-constrained by exper-
iment although much has been learned experientially, particularly with regard
to testing software systems.

In the sense that testing is an activity whose primary purpose is to find
problems, there are essentially two forms of software testing:-

• Static testing. This covers all test techniques which attempt to discover
potential problems by simply examining a design or piece of code. No
attempt is made to run the system. The archetypal static test technique
is the design or code inspection, [5]. Static test techniques find faults.

∗L.Hatton@kingston.ac.uk, lesh@leshatton.org

1

Faults Failures

Prediction

Diagnosis

Figure 1: The relationship between diagnosis and prediction in a mature engi-
neering discipline. The clockwise feedback nature of this process involves the
study of failures in older systems to discover the underlying faults responsible
(diagnosis), eventually followed by the anticipation of failures in new systems
from the presence of similar faults (prediction). This process is generally ongo-
ing.

• Dynamic testing. This covers all those test techniques which observe a
running system and attempt to discover inputs which lead to unexpected
outputs. Dynamic test techniques find failures. All failures are caused by
at least one fault but not all faults fail. The nomenclature used here is
the same as used in [12].

In an ideal world, testing would simply stop when all the faults that have failed
(defined to be defects here) had been found and corrected. This is generally
impractical given commercial exigencies so, in all engineering systems, there is
a risk of failure in the delivered product and engineers traditionally deal with
this using the concept of ”good enough” or with critical systems, ALARP, (As
Low As is Reasonably Practical). With conventional systems such as those in
civil, mechanical and aeronautical engineering, historical experience is often an
excellent guide to the future behaviour of an engineering system based on its
past behaviour. This experience is accumulated by a continual feedback process
based on the analysis of failure as shown in Figure 1. Over a period of perhaps
many years as the engineering discipline matures, failing systems are diagnosed
to determine why they failed in order to prevent future failures of the same
nature.

Checklists of faults which could lead to failure are a natural output of the
diagnostic process and can take many forms as is apparent for example on the
excellent NASA Goddard Space Flight Centre website for Software Quality, [4].

The primary object of this paper is to assess how useful checklists are in
practice in code inspections using formal statistical inference.

2

1.1 Code inspections

The benefit of code inspections has been re-iterated many times since the sem-
inal work of [5] and a detailed review can be found at [3]. It is almost certainly
true to say that inspections are one of the most successful technologies for the
removal of defect ever discovered although it is unclear if all fault modes can
be detected in this way. The reader is referred to [6] and [13] for more details
and to [15] for a review of some of the inspection approaches which have been
proposed.

Inspections have another important property. Because there is generally no
knowledge of run-time behaviour when an inspection is carried out, inspections
attack the entire fault space irrespective of any temporal properties. In contrast,
dynamic testing only attacks that subset which can be provoked to fail in a
given run-time. Figure 2 illustrates this point. As time goes by, the subset of
faults which have actually failed gradually grows within the set of faults which
could fail. It may never fill the entire fault space for various reasons. As was
demonstrated so emphatically by [1], a significant percentage of defects, around
a third in his case take at least 5,000 execution years to fail for the first time so
such defects would be effectively impossible to reveal with dynamic testing. For
such defects, static techniques such as code inspections remain the only option.
Of course, some systems may never see a total of 5,000 execution years but for
a reasonably ubiquitous embedded control system for example, such a total can
be exceeded collectively within a few weeks or even days.

Another source of faults which may never fail during the life-cycle of a pro-
gram is the set of faults which cannot be executed because there is no possible
execution path which can provoke their failure. In some complex systems, sig-
nificant parts can be effectively unreachable so this may not be small.

Finally, inspections also have the benefit of taking place before run-time test-
ing starts. It has been very widely known since the work of [2] that defects
found no later than this phase are very substantially cheaper than finding the
same defects during run-time testing, (unit, system, acceptance ...).

1.2 Checklists

The essence of the checklist, a prediction mechanism in the sense of Figure 1, is
to formalise the process of common fault mode detection and avoidance. Their
central role in the practice of inspections is comprehensively discussed by [6]
but they naturally involve an overhead. First, data on previous defects (faults
which are known to have failed) needs to be acquired and then analysed to
identify repetitions before these are codified in checklist form for future devel-
opments. It is also possible to construct checklists by interview with experienced
engineers in the absence of any such data but the result and any resulting ben-
efit is often harder to quantify. Second, inspectors must continually cross-refer
between checklists and the code or design being inspected. Unfortunately, in
software-controlled systems, historical experience is usually not available, not
documented, or is of questionable relevance because the build techniques have
changed too much and prediction mechanisms are correspondingly undermined,

3

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Faults which have not yet failed

Faults that have failed

Figure 2: The relationship between faults and defects. Dynamic testing by
definition can only attack the faults that can be provoked to fail in the available
time shown by the shaded area. In contrast, inspections operate on the entire
fault space represented by the larger unshaded area.

(primarily because diagnosis is so poor, [9]). This has many negative implica-
tions but this paper will focus on one of them and attempt to assess the benefits
of using checklists in code inspections.

2 The experiments

This paper had its roots in an experiment to assess how well the total number of
faults in a component could be predicted by using capture-recapture techniques,
[17]. This was implemented by using a two-phase inspection whereby engineers
would inspect a program individually (phase 1, individual preparation) and
then, together with another engineer, they would determine which faults were
found by both of them (phase 2, simulating a logging meeting), [15]. Together
these phases will be known here as a two-person team inspection.

Such information can be used as follows. Let P(A) be the probability of a
fault being detected by person A in some product. Similarly let P(B) be the
probability of a fault being detected by person B in the same product. Then
with the single assumption that A and B are independent, (which will be tested
shortly),

P (A ∩B) = P (A)P (B) (1)

Further suppose that there are ’n’ faults altogether, that person A finds ’a’
faults, person B finds ’b’ faults and that they find ’q’ faults in common. Then,
using the above equation,

q

n
=

a

n

b

n
(2)

4

From this, re-arranging yields:

n =
ab

q
(3)

Provided, q 6= 0, this provides a simple way of calculating the total number
of faults using data on the number of faults found in common between two
inspection groups under the assumption of independence described above.

2.1 Experimental design

Some time was taken to select the right program to inspect for the experiment.
The principle constraints were engineering time and also the ability to calibrate
the experiment in the sense of knowing actually how many faults were in fact
present. This latter problem was solved by restricting the scope of the inspection
to a known class of faults in the programming language C which can be easily
categorised by checklists, [8], [11], often known as code inconsistencies and also
easily verified. In addition, it would need enough faults in it to give reasonable
results and it would be preferable to have originated from a real system. The
chosen program was a C program of 62 lines, originally part of a high-integrity
system. It was then slightly modified and reduced to remove all identification,
(although all faults described below were unaltered by this process). Although
small, this program fitted all the criteria well although.

The program was then analysed both automatically and manually for the
chosen set of faults. This allowed the total number of faults to be specified
quite precisely as 26 ±2. The error bound although subjective, was added to
mirror the fact that some statically detectable failure prone fragments in this
program may have noise associated with them in the manner described by [11].
The presence of so many faults in a real system is somewhat unusual although
not unknown. Almost all programs analysed in [8] showed the presence of such
faults but at a much lower rate of around 1 every 120 lines or so. This program
is atypically but not uniquely very poor but suited the experiment well giving
a finer granularity to the results. Engineers were not told how many faults to
expect.

Examples of some of the fault modes and occurrence rates are shown below.
The remainder had some degree of noise associated with them, for example the
recommendation that ’if’ and ’else’ branches be brace-enclosed.

5

Fault mode occurrences
Returning the address of a local from a function 1

Test of unsigned variable for negativity 1
Implicit conversion between int and unsigned int or long 3

Unary negative applied to unsigned object 1
Pointer cast to potentially stricter alignment 1

malloc() called in absence of a prototype 1
Non re-entrancy created by unnecessary internal use of static 1

Unconditionally uninitialised variable 1
enum value missing from switch on enum 1

Non-empty case falls directly through to next case 1
Re-initialisation expression of for loop of floating type 1

Comparison of floating types for equality 1
Memory leak 1

Conditionally uninitialised variable 6

As noted above, these faults fall under the general umbrella of inconsistencies
in the use of language. They are easy to categorise in checklists and are often
the subject of such lists in real inspections, [10]. Such faults can in principle be
detected automatically by tools although tool deployment is often rather vari-
able between development groups. In this case, whether or not the faults could
be detected automatically does not detract from the essence of an inspection
and it allowed independent verification of the faults. It should be noted that in
practice, it is generally considered wise to automate such fault detection as is
possible in an organisation, leaving the remainder for human eyes.

These faults were gathered together into the following checklist categories:-

• Dataflow, (i.e. initialisation and use of objects)

• Static faults (Fundamental misunderstandings in the use of C.)

• Interface disorders

• Undefined behaviour in the language

• Function use unprotected by prototypes

• Potentially dangerous behaviour

• Masked declarations

In the case of code inconsistencies, it is generally not feasible to present a
full list of all fault modes as there are several hundred of them in the case
of the programming language C and presentation as categories is common in
checklists presented in programming standards, [10]. The checklist was therefore
presented to the engineers in this form with a pre-amble. Those engineers
using the checklist were told that all the faults in the program fell into these
categories with the intention of promoting a structured and profitable way of
inspecting the program for faults:- dataflow, interfaces, and so on. All the
engineers were familiar with code inconsistencies in the programming language

6

C but those engineers not using the checklist were given no other information
other than that the code to be inspected contained an unspecified number of such
inconsistencies. The overall distribution of industrial engineering experience in
years was not measured in detail but was in the range 2-20 years.

2.2 Experimental procedure

The original idea was to test capture-recapture techniques and their potential
ability to predict the total number of faults in a program. Such techniques
depend for their success on independence as described above so the experiment
was set up in two parts as follows.

• Part 1 was set up to test independence. Checklists were introduced on a
random basis, (the developer could choose whether to use them or not), to
mirror common practice in industry as their use is not always mandated,
[10].

• Part 2 was then intended to test the ability to predict the total number of
faults assuming part 1 supported independence as a reasonable assump-
tion. (It was expected that the assumption of independence might well be
prejudiced by the use of checklists by some developers.)

2.2.1 Part 1: 2003-2005

Initially, groups of industrial embedded system engineers in three separate coun-
tries, from Germany (4x2 person teams in one location and 4x2 person teams in
another), Austria (3x2 person teams) and from India (11x2 person teams) over
a 2 year period, were allowed to inspect the described program individually for a
total of 30 minutes, corresponding to an inspection speed of approximately 120
lines of code per hour. This lies within the most efficient range quoted by [13],
although is a little fast according to [6]. Following this, individual engineers
were then combined in teams of two to compare notes for a further 15 minutes
to determine which faults they had independently found in common. The choice
as to whether to use a checklist or not was left up to the individual engineer and
was not recorded. The results were then collected and are shown below.

7

Faults found by In-
spector 1

Faults found by In-
spector 2

Faults in common

7 9 3
12 13 3
14 12 4
10 7 4
10 11 6
14 10 5
8 9 3
6 6 3
9 6 3
15 10 4
10 13 3
15 17 11
25 20 17
19 15 9
14 13 8
11 18 9
5 17 5
17 9 6
13 8 2
15 10 6
17 8 5
17 10 6

Table 1: Inspection results for part 1

Testing the assumption of independence It was originally expected that
the use of checklists by some of the participants would compromise the notion
of independence. If two engineers are using the same checklist individually,
it would be expected that this would increase the number of faults found in
common. However the assumption of independence was essential to the capture-
recapture part of the project originally planned, consequently it was tested
statistically.

Two events A and B, are independent if and only if P (A ∩ B) = P (A)P (B)
and so the statistic P (A ∩ B) − P (A)P (B) was tested using the Kolmogorov-
Smirnov test for normality. The result is that this statistic is consistent with
a normal distribution N(µ = 0.0183, σ = 0.07433) with a power p = 0.82.
The equivalent 95% confidence interval for the mean is (-0.0084,0.0484) which
includes 0.0 so the hypothesis that P (A∩B)−P (A)P (B) is normally distributed
with a mean of zero cannot be rejected, and therefore neither can the hypothesis
of independence be rejected.

This inconclusive result was surprising. The use of checklists by at least some
of the engineers even anonymously would be expected to guarantee that the in-
dependence assumption would be questionable at best because a percentage of
the population would be individually driven preferentially towards well-known

8

fault modes. Furthermore, some of these fault modes were present in the in-
spected program. As a result, part 2 of the experiment was re-designed to
explore this observation further and to test the effectiveness of checklists in
these inspections by deliberately selecting specific engineers to use checklists.

2.2.2 Part 2: 2006-7

In this part engineers in Germany and Sweden (119x2 person teams altogether)
over an eight month period, were allowed to inspect the described program un-
der the same conditions as before except that specified engineers were selected
to use checklists. The selection was done so that at the comparison stage where
pairs of engineers compared what they had found in common, either both or
neither had used checklists to maximise the possibility of seeing a positive rela-
tionship between the use of checklists and the number of faults found. Selected
engineers used the checklist side by side with the code under inspection. The
other engineers did not see the checklist. Finally the selection was made such
that no engineer using a checklist sat next to an engineer not using a checklist.

The results were again collected but because of space limitations are only
summarised below. In the interests of both pedagogy and repeatable science, the
full anonymised raw data for this experiment are freely available for download
and analysis 1 in the form of a zipped Excel spreadsheet.

Category Mean Std. dev. Number
Entire population 13.66 5.12 238
Individual faults found using checklists 13.97 5.27 106
Individual faults found not using checklists 13.40 5.00 132
Common faults found using checklists 7.87 3.69 53
Common faults found not using checklists 7.41 4.06 66

Table 2: Inspection results for part 2. Recall that when teams mea-
sured common faults, either both were using checklists or neither.

These data can now be tested directly. The following hypotheses will therefore
be made:-

• H0 The null hypothesis, the number of faults found does not depend on
the use of checklists.

• H1 The alternative hypothesis, the number of faults found does depend
on the use of checklists.

To infer that the number of faults does indeed depend on the use of checklists,
the data must reject the null hypothesis at some standard level of significance.
The data will be analysed using the z-test for the difference of means in a popu-
lation, [18]. This states that the following statistic is approximately distributed

1http://www.leshatton.org/Data Inspections 05-06-2007.html

9

as N(0,1) provided the numbers in the sample are considered large as is the case
here,

z =
X1 −X2

((s1)2

N1
+ (s2)2

N2
)

1
2

(4)

where Xi, si and Ni are respectively the sample means, standard distributions
and number of samples for the data using checklists and the data not using
checklists respectively. Any significant difference in the means can be taken to
imply the presence of a real effect at some level of confidence. Substituting the
numbers from the table above yields,

z =
13.97− 13.40

((5.27)2

106 + (5.00)2

132)
1
2

' 0.055 (5)

In order to reject the null hypothesis and infer a significant difference between
the checklist and non-checklist populations at the commonly used 5% level, |z|
must be > 1.9. This result is not even significant at the 10% level so there is no
basis for rejecting H0 and it must be concluded that there is no basis to reject
that the number of faults found does not depend on the use of checklists. It is
useful to repeat the same calculation for the number of faults found in common.
As discussed above, it might be expected that any effect would be amplified if
both inspectors were using checklists. Repeating the calculation for the faults
found in common gives:-

z =
7.87− 7.41

((3.69)2

53 + (4.06)2

66)
1
2

' 0.063 (6)

Again this is not significant at any standard level, so there is still no evidence
to reject the hypothesis that the number of faults does not depend on the use
of checklists.

Discussion This negative result is again troubling. In the first part of this
experiment when the choice of whether to use checklists or not was left up to
the engineer and not recorded, no significant pattern challenging the notion of
independence emerged from the data even though it might be expected that the
presence of at least some engineers using checklists would prejudice indepen-
dence. In the second part with a different set of engineers in which the choice
to use a checklist was assigned to the engineers in a way designed to emphasise
the presence of any biasing effect, there is still no significant pattern.

If there is any benefit to be derived from doing checklists, it does not present
itself at any statistically significant level in either of the two parts of the exper-
iment described here. In spite of this, it is known from the previous references
that inspections are very successful at finding defect so the hypothesis will be
advanced here that when a human inspects a program, a checklist is too simplis-
tic to describe the mental processes involved. It is also possible that engineers
simply ignore them even when requested to use them but this seems unlikely
given the numbers involved in the experiment.

10

There is of course an underlying assumption made here and that is that
checklists for code consistency are representative of checklists as a whole. Given
the nature of checklists, this does not seem an unreasonable assumption to make
and the experiment described here does mirror common industrial practice as
described in [10] but further experiment would be necessary to explore this in
detail.

2.2.3 Effects of experience

The size of the dataset allowed statistical tests to be made to see if there was any
relationship with experience of the developer. For the purposes of this analysis,
an experienced or inexperienced developer will be defined as being outside one
standard deviation of the entire population mean in Table 2 on the appropriate
side of the mean. In other words, experience will be defined as finding at least
16 faults and inexperience will be defined as finding at most 11. Although
somewhat arbitrary, this has the advantage of being related in conventional
statistical terms to the population as a whole. Analysing these two populations
separately gives the following results:

Category Mean Std. dev. Number
Experienced population using checklists 19.60 4.02 35
Experienced population not using checklists 19.56 3.47 35
Inexperienced population using checklists 8.22 2.24 32
Inexperienced population not using checklists 8.81 1.92 52

Table 3: Inspection results for experienced and inexperienced pop-
ulations. Here experience is defined by those who found at least 16
faults and inexperience is defined by those who found at most 11
faults.

For the experienced population:-

z =
19.60− 19.56

((4.02)2

35 + (3.47)2

35)
1
2

' 0.006 (7)

For the inexperienced population:-

z =
8.81− 8.22

((1.92)2

52 + (2.24)2

32)
1
2

' 0.104 (8)

Again, neither result is significant at any standard level, so the experiment
cannot distinguish any significant difference due to the use of checklists based
on whether the population is experienced or not in the sense defined above. The
individual experience in terms of years was not recorded for the engineers so no
relationship could be drawn between temporal experience and the number of
faults found in this experiment.

11

2.2.4 Variation between engineers

Finally, it has often been noted, [7] and [16] amongst others, that there are
wide variations (i.e. a factor of 10 or more) in the performance of software
developers in various skills. This dataset affords the possibility of quantifying
this for the particular case of fault detection in inspections. The mean and
standard deviation for the dataset as a whole were:-

• Mean = 13.66

• Standard deviation = 5.12

This gives a rather wide 95% confidence interval of 13.66 ± 1.96 . 5.12 =
[3.62,23.70] with the best member of the population about a factor of 10 better
than the worst, a very similar result to those of [7] and [16] but in a rather
different category.

2.2.5 2 person teams versus individuals

Finally, the data also allows an estimate of how much better a two person team
performs than an individual. Here a two-person team means two individual
inspections followed by a meeting to discover faults found in common. The
average number of faults found was 13.66 (53%) by individuals and 19.71 (76%)
by a two-person team.

3 Conclusions

A formal statistical analysis of 308 individual inspections for code inconsistencies
some of which were controlled by checklists and others not reveals in the slightly
awkward parlance of statistical inference, that there was no evidence to reject
the hypothesis that checklists have no effect on the number of such faults found
when inspections are carried out at recommended rates.

Furthermore, when the population was split into inexperienced and experi-
enced engineers in terms of number of faults found, there was still no statistically
significant relationship between the use of checklists and the number of faults
found in either population. The null hypothesis again could not be rejected
even though it might have been expected that inexperienced programmers would
benefit more from checklists than experienced programmers. In the language of
statistical inference, this does not of course prove that checklists have no effect
but the result is sufficiently inconclusive that the role of checklists in inspections
should be investigated further.

It may well be that checklists are critically dependent on the way they are
worded and/or on the way they are enforced and that the checklist used here is
deficient in some regard. In its defence, this checklist followed a model often used
in industry and such sensitivity alone would be cause for some concern. However,
the simplest explanation of the inconclusive result reported here seems to be that
reasonably experienced engineers appear to use personalised ’internal’ methods
whether given checklists explicitly or not. It may even be that these internal
methods take the form of implicit checklists but this is a matter for further

12

investigation. It should also be re-iterated that the checklists considered here
refer only to one particular kind of fault, viz. code inconsistency and the piece of
code under inspection was relatively short. Whether these results extend to the
many other kinds of inspection reported in the software engineering literature
is also a matter for further formal investigation.

Finally this dataset also revealed that there is quite a high variation in indi-
vidual inspector’s performances with the worst a factor of 10 or so less effective
than the best. Such a factor has emerged in other studies in areas as disparate
as productivity [7], and performance [16]. In the study described by [7], the
group under study was restricted to experienced programmers only and the
broad variation still existed. This continuing wide disparity between the best
performing and the worst performing in any programming group when mea-
sured in very different ways remains a challenging obstacle to progress in the
consistent production of reliable systems within a fixed time and a fixed budget.

References

[1] E. Adams. Optimising preventive service of software products. IBM Journal
of Research and Development, 1(28):2–14, 1984.

[2] B. Boehm. Software Engineering Economics. Prentice-Hall, NJ, 1981.

[3] Bill Brykczynski. A survey of software inspection checklists. ACM Sigsoft,
Software Engineering Notes, 24(1):82–89, 1999.

[4] NASA Goddard Space Flight Center. Software quality practices website.
http://sw-assurance.gsfc.nasa.gov/disciplines/quality/, 2007-.

[5] M. Fagan. Design and code inspections to reduce errors in program devel-
opment. IBM Systems Journal, 2:182–211, 1976.

[6] T. Gilb and D. Graham. Software Inspections. Addison-Wesley, 1993. ISBN
0-201-63181-4.

[7] E.E. Grant H. Sackman, W.J. Erikson. Exploratory experimental studies
comparing online and offline programming performance. CACM, 11(1):3–
11, 1968.

[8] L. Hatton. Safer C: Developing software in high-integrity and safety-critical
systems. McGraw-Hill, 1995. ISBN 0-07-707640-0.

[9] L. Hatton. Characterising the diagnosis of software failure. IEEE Software,
18(4):34–39, July 2001.

[10] L. Hatton. Safer language subsets: an overview and a case history, MISRA
C. Information and Software Technology, 46:465–472, 2004.

[11] L. Hatton. EC– a measurement based safer subset of ISO C suitable for em-
bedded system development. Information and Software Technology, 47:181–
187, 2005.

13

[12] L. Hatton. Some empirical test observations in client/server systems. IEEE
Computer, 40(5):24–29, May 2007.

[13] W. Humphrey. A discipline of software engineering. Addison-Wesley, 1995.
ISBN 0-201-54610-8.

[14] Royal Academy of Engineering. The challenge of complex it projects, 2004.
Royal Academy of Engineering report, London, ISBN 1-903496-15-2.

[15] S.L. Pfleeger, L. Hatton, and C. Howell. Solid Software. Prentice-Hall,
2002. ISBN 0-13-091298-0.

[16] L. Prechelt. Comparing java vs. c/c++, efficiency differences to inter-
personal differences. CACM, pages 109–112, October 1999.

[17] Z.E. Schnabel. The estimation of the total fish population in a lake. Amer.
Math. Mon., 45:348–352, 1938.

[18] M.R. Spiegel and L.J. Stephens. Statistics. Schaum. McGraw-Hill, 3rd
edition, 1999.

14

