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ABSTRACT
Zipfian power-law behaviour (with a droopy tail) follows naturally from
CoHSI homogeneous theory, the backbone of the Fundamental Law
of Inequality. The result is a power-law curve of frequency v. rank,
degrading naturally into a drooping tail for sparsely-occupied ranks. In
this paper we discuss the various ways in which the underlying dataset
might be incomplete, for example with missing ranks or affected by noise
such as distortions in the measure used to bin data samples and how we
must interpret this.

CONTENTS

Contents 1

1 The derivation of the CoHSI distributions 1
1.1 The Heterogeneous CoHSI Distribution . . . . . . . . . 1
1.2 The Homogeneous CoHSI Distribution . . . . . . . . . 2
1.3 Comparing heterogeneous and homogeneous systems . 3
1.4 Potential data distortions . . . . . . . . . . . . . . . . . 4

2 Conclusions 5

References 6

1 THE DERIVATION OF THE COHSI DISTRIBUTIONS
1.1 The Heterogeneous CoHSI Distribution
The standard formulation of Statistical Mechanics [1] for a simple
heterogeneous system of the form of Fig. 1 where each component is
represented by a string of beads of different colours and distinguishable
order when we set as constraints the total information content (I) and the

total number of tokens (T) and using Stirling’s approximation for log(ti!)
reduces to [2]

Figure 1. Illustrating the CoHSI heterogeneous model. Seven components are
shown as strings of tokens that are distinguishable by both their colour and their
order but have no intrinsic meaning. In the case of the system of proteins, each
string would correspond to a unique protein and each of the tokens would be an
amino acid. Different colours would indicate different amino acids. On the other
hand, if we applying this to software, each string would be a software component
and the beads would be programming language tokens.

log Ω = T log T−T−
M∑
i=1

{ti log(ti)−ti}+α{T−
M∑
i=1

ti}+β{I−
M∑
i=1

Ii}

(1)
Here Ii is the Hartley-Shannon Information content of the ith string.

Based on an open template from Overleaf made for the University of Birmingham by Harry Cooke. 1
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Applying the δ() variation to (1) to vary the string sizes ti whilst
keeping the ai constant in the usual way [1] and simplifying gives

0 = −
M∑
i=1

(
log ti + α+ β

dIi
dti

)
δti (2)

Calculating the Ii for the heterogeneous case is not trivial but can be
done using a recurrence relation as detailed in [2]. For the homogeneous
case however, it is much simpler as we shall now see.

1.2 The Homogeneous CoHSI Distribution
In contrast to the string of beads model of the heterogeneous CoHSI
distribution, there is another way of arranging our beads amongst
components [2]. We call this a homogeneous system. In such a system,
the system can be represented by a number of components each appearing
as a bin. A bin contains only one kind of token in indistinguishable order
and no two bins have the same coloured bead. This is illustrated using
beads of different colours in Fig. 2. This distribution encompasses a
wide class of systems as different as word counts in textual documents
and the distribution of elements in the universe [3]. In such systems, a
heterogeneous definition of information for a bin is degenerate since there
is only one kind of bead in each bin in contrast to the different colours of
bead on the same string in the heterogeneous case. We need therefore a
different definition for information content, which as we will show leads
directly in our theory to an alternative proof of Zipf’s law which is known
to be present in many datasets, [4].

We anticipate that these distinctions between heterogeneous and
homogeneous systems will lead to different information measures with
consequently different properties. We should not be surprised by this
as precisely the same occurs in physical systems where distinguishable
order leads to Bose-Einstein statistics and indistinguishable order leads
to Fermi-Dirac statistics [1].

Figure 2. Illustrating the CoHSI homogeneous model. In each bin, all of the
tokens are identical (i.e. of the same colour). Each bin contains tokens of a
different colour and the beads are by definition in no distinguishable order.

Whichever definition of Hartley-Shannon Information is used, we
recall that the methodology simply tells us the most likely, or canonical
distribution for discrete systems with the same fixed size and fixed
information content, howsoever defined.

In homogeneous systems, we can envision that each bead or token
carries a payload unique to its colour such that each bin contains only
tokens with the same payload, unique to that bin. We don’t need to
know what this payload is and it is indeed irrelevant as the beads have
no intrinsic meaning in this theory; the only property that differently

coloured beads have is that of distinguishability. We represent this system
by assembling beads of the same colour in the appropriate bin, Fig. 2. As
mentioned earlier, we cannot simply follow the heterogeneous model by
setting the size of the alphabet for each bin as each bin is degenerate -
the alphabet ai = 1 for all bins. Since log 1 = 0, this would give the total
Hartley-Shannon Information as zero. Recall however that we are only
looking for the total number of ways of arranging the beads in these bins
so that each bin has beads of a unique colour without any regard to order.

Suppose then we have M bins such that the ith bin contains ti beads of
unique colour bi, where the total number of beads is T =

∑M
i=1 ti. We

will renumber them without loss of generality so that t1 ≤ t2 ≤ .. ≤ tM
so that i becomes synonymous with rank.

We proceed as follows. Imagine an infinite reservoir comprising equal
numbers of each of the M colours. The numbers are equal because any
colour has the same probability of being selected as any other colour.
We want to fill all the bins using T beads drawn from this reservoir such
that we finish up with a system where each of our M bins has its own
unique colour as shown in Fig. 2. We need to know the total number
of ways in which this is possible because this immediately tells us the
Hartley-Shannon Information. To proceed, first select the bin numbered
M and then fill it by selecting tM beads of the same colour. Since we
are selecting from M different colours and we have an infinite number
of beads, the probability that we will achieve this selecting at random
is (1/M)tM . For the second bin, we must then choose tM−1 beads of
the same colour from one of the remaining M − 1 colours, since no two
bins can have the same colour, so the probability of filling this bin with
the tM−1 beads of this colour from the remaining colours is (1/(M −
1))tM−1 , and so on.

The total number of ways Nh this can be done to populate all M bins
is then given by this combined probability multiplied by the total number
of ways in which T beads can be selected without constraint, which is
T !. So we get,

Nh = T !

[( 1

M

)tM ×
( 1

M − 1

)tM−1×..×
(1
1

)t1] = T !

M∏
i=1

(1
i

)ti (3)

Rewriting (3) then, the information content of this system is

logNh = log T ! +

M∑
i=1

ti log
(1
i

)
= log T !−

M∑
i=1

ti log i (4)

Following the heterogeneous development by folding this into the third
term on the right hand side of (1) and applying the δ() operator using
Stirling’s approximation, the equivalent of (2) now gives

0 = −
M∑
i=1

(
log ti + κ+ η log i

)
δti, (5)

leading to a homogeneous system pdf given by

ti ∼ i−η, (6)

where η, κ are once again Lagrange undetermined multipliers.
There are notable differences between this and the heterogeneous case.

• No approximation is necessary for components, (i.e. bins rather than
strings as there is no distinguishable order), when ti is comparable to
ai, since this does not arise in the homogeneous case.

• This is a pure power-law at all values of ti but arranged in order of
rank since as we have already pointed out i is now synonymous with
rank; this is in fact Zipf’s law, except for bins which have the lowest
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populations, in which case Stirling’s law is not sufficiently accurate
and the result is a natural droop in the tail of the distribution, i.e. the
most sparsely-populated bins, as we shall see. The explicit appearance
of rank is a direct result of CoHSI.

1.3 Comparing heterogeneous and homogeneous systems
Both heterogeneous and homogeneous systems share precisely the same
underlying methodology, both are the overwhelmingly most likely
distributions given their total size and their total Information. What is
crucially different is the measure of Information used in each.

To re-iterate, heterogeneous distributions result when each component
in a system comprises an ordered string of tokens (beads) with more
than one type of token (colour of bead) represented. In contrast, each
component of a homogeneous distribution is simply a bin containing all
beads of the same type (colour) with no order implied. Each bin of course
has a different colour.

Mathematically, the difference can be seen by comparing equations
(2), (5). For convenience, they are repeated here in the form in which
they are solved as heterogeneous and homogeneous respectively.

0 =
(
log ti + α+ β

dIi
dti

)
(7)

0 =
(
log ti + κ+ η log i

)
(8)

They look very similar but this similarity conceals a fundamental
difference. The solution of (7) leads to frequency v. length (ti)
relationship, whereas the solution of (8) leads to frequency v. rank
relationship.

First we note that this is not an artificial distinction, it emerges
naturally from the mathematics. It turns out that both (7) and (8) are
dominated by power-laws parameterised in the case of heterogeneous
systems by the Lagrange undetermined constants α, β and the
homogeneous case by the Lagrange undetermined constants κ, η, but the
”x-axis” in the former is length and in the latter is rank.

Why does this matter? Well, consider what happens when our simple
data model breaks down under real-world conditions of missing or
distorted data.

1.3.1 Missing data for the ith rank or component In the heterogeneous
case, if we have no data for the ith component, i.e. no values of ti, then a
gap quite naturally appears in the plot, since its ”x-axis” is ti. Dealing
with gaps is a routine procedure in mathematics using interpolation
via collocation (honouring existing data points using splines of various
kinds) or data fitting using some kind of metric such as least squares.
For power-laws specifically when we are considering a general ”x-axis”
rather than using the rank, some form of non-linear collection or binning
is often used [4]. There are many options.

In the homogeneous case, its not immediately obvious how to deal
with a missing bin because the ”x-axis” is rank. If a bin is empty for
some reason, rank ordering means that all the bins are shuffled up so that
only non-empty bins contribute to the functional shape. However, the
argument used above in deriving equation (8) assumes that the M bins
completely characterise all possibilities. In other words it assumes that
the data are complete. If they are not complete, then for consistency with
the heterogeneous model, we should leave gaps in the frequency v. rank
distribution and use the ”x-axis”, in this case protein multiplicity, as a
proxy for rank number.

The essence of applying the homogeneous case to real-world systems
is to find a criterion to distinguish in which bin a data point is to be placed.
The only requirements are that each bin contains an unordered collection
of objects with the same property and that no two bins overlap and that
this completely describes all data points. This is expanded at length in

[3] where many examples of such mappings are shown, for example
with lunar craters, ranges of diameters are used leading inevitably to the
frequency v. rank Zipfian distribution. Sometimes these examples have
a known set of values for binning, for example if contiguous k-tuples
are used to break up the genome, we know that there are exactly 4k

possibilities since there are 4 nucleotides. Other times, we may not know
the maximum bin number because it is defined by the data.

To illustrate what happens when this mapping has gaps, i.e.
unpopulated or missing bins, consider the example of horizontal gene
transfer [5]. This is an example of a homogeneous system where the
criterion determining the colour of a bead is the number of times an
exact copy of the same protein occurs in more than one species (or its
equivalent) somewhere in the three domains of life (Archaea, Bacteria
and Eukaryota) or viruses. This is known as the protein multiplicity.
If we focus on a single bin, each bead corresponds to a particular
protein which happens to be copied the same number of times around the
phylogenetic tree of life or viruses. First we should note that the proteins
quite likely have nothing else in common. Why should they? There is no
physico-chemical property which they would obviously have in common.

It should be obvious that for low multiplicity, the corresponding
bin will likely have many proteins and for high multiplicity, many
fewer. Amongst millions of proteins known to be distributed around the
phylogenetic tree and viruses, it is pretty likely the same one will occur
say twice, whilst it seems likely that proteins occurring say 10000 times
elsewhere are much rarer. As we increase multiplicity from 2, sooner or
later we will encounter a bin which is empty. In fact as the multiplicity
further increases, more and more bins are likely to be empty.

Consider Fig. 3. This shows five generations of the Trembl protein
database (ftp://uniprot.org), versions 15-07 to 21-03 with the protein
multiplicity plotted against the multiplicity rather than the rank.
As can be seen (and robustly supported statistically), these form
the characteristic straight line of a power-law as this is a log-log
cumulative complementary distribution function. However looking down
the individual lines as we get to sparsely occupied bins, gaps are
increasingly obvious. However as the ”x-axis” here is multiplicity, the
gaps are explicitly plotted. This is consistent with the way we treat
heterogeneous distributions for which the ”x-axis” is length.

We should note three things. First of all, the first empty bin occurs
later and later as the Trembl distribution grows in size. Second, up to
the number of this bin, multiplicity and rank are synonymous. Third, an
empty bin in one version might not be an empty bin in a later or even
earlier version of the database. Consider Table 1, where we can see all
these factors.

Table 1. First missing bin Trembl releases.

Trembl
version

Total proteins
with 1 copy

First
missing bin

Notes

7-01 5,980 40 -
13-01 51,709 106 -
15-07 215,916 122 Populated in 13-01
18-02 909,066 162 Populated in 13-01,

missing in 15-07
21-03 1,995,3545 237 -

It is clear that this is a missing data problem which we can solve by
following the example of the heterogeneous distribution and extending
the homogeneous case to missing bins assuming that the criterion used to
distinguish the bins, which in this case represent protein multiplicity, is
synonymous with rank and leaving the gaps in the frequency v. rank plot.
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We can see this in plots of the full datasets. When we plot this data
in extended homogeneous form with gaps corresponding to missing bins
included, we get Fig. 3. This is a nearly 4 decadal power-law strongly
supported by both necessary and sufficient statistical arguments [5].
However if we plot this as pure rank order assuming the data is complete
i.e. no missing bins, the points all shuffle up to give Fig. 4. This is
identical with Fig. 3 up to the first missing bin and thereafter as more
and more bins are missing, an accelerated droop can be seen reducing the
power-law by an entire decade.

To summarise this section, it seems clear then following the
heterogeneous model, that assuming protein multiplicity as a proxy for
rank is the consistent approach when we have missing data.
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Figure 3. By multiplicity.
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Figure 4. By rank.

1.4 Potential data distortions
Data distortion occurs when we incorrectly measure either length in the
case of heterogeneous systems or mis-categorize a bead in homogeneous
systems placing it in the wrong bin. Let’s give an example of this in a
heterogeneous system.

We know with a very high degree of precision [2], that if we plot
the frequency of software components of different lengths measured
in programming language tokens, we will get a multi-decade high
precision power-law exactly as predicted by the application of CoHSI
(Conservation of Hartley-Shannon Information). Fig. 5 illustrates.
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Figure 5. A population of software illustrating the emphatic power-law of
function lengths when measured in programming language tokens.

This is not the case however if we use source lines of code to measure
program size. Source lines of code are the conventional way of measuring
program size and have been used for decades by computer scientists
because of their visual appeal and easy measurement. They do not
however map onto any information model and their definition varies
between programming languages [6].
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Exactly the same data is shown measured in source lines of code as
Fig. 7. The continuous curvature of this, a characteristic of log-normal
behaviour, is just about evident when compared with the straightness of
Fig. 6, but a detailed analysis by [7] on the same software distribution
concludes that it is probably log-normal or double Pareto.

In other words, by distorting the length measurement, the high-
precision power-law which occurs when using a measurement derived
from Information Theory, that of language tokens, degrades into a more
complex distribution when a more arbitrary length measurement with no
relationship to Information Theory is used. Whether this is log-normal
or double Pareto is irrelevant, the departure from pure power-law is an
artifact of using the wrong measurement system.

2 CONCLUSIONS
Two distributions, one of frequency v. length (heterogeneous) and one of
frequency v. rank (homogeneous) naturally emerge from CoHSI theory.
With real data we must of course consider the effects of missing or
corrupted data. In this paper we have demonstrated the effects of missing
bins on a homogeneous system taken from the complete known set of
proteins and how the theory has to be modified to deal with this.
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