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A little about this talk

This is the first talk I have done which apart from its
beamer interface used no Microsoft software whatsoever.
It was constructed on Linux using the Kile interface to
Latex and the Beamer package.
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Cryptographic Model

Figure: Alice talks to Bob eavesdropped by Eve
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Symmetric key cryptography

Age-old method.
Alice secretly tells Bob her key, (one-time pad ...)
Alice uses this to send encrypted message to Bob.
Bob decrypts using his secret knowledge
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Symmetric schematic

Figure: Alice talks to Bob using symmetric methods
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Symmetric key cryptography

How do you exchange keys without secret knowledge ?
Solved by Diffie in principle
Became known as DHM (Diffie-Hellman-Merkle) key
exchange.
Requires commutativity of keys.
No such keys found and pre-empted by asymmetric
methods.
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Asymmetric key cryptography

Invented by Cliff Cocks in early 1970s (Ellis, Cocks and
Williamson).
Rediscovered by Rivest, Shamir and Adleman in 1977
(RSA).
Depends on intractability of factoring product of large
primes and does not require separate sender-receiver key
agreement.
Expensive so often mixed with symmetric algorithms which
are much faster.
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Figure: Alice talks to Bob using asymmetric methods
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Motivation

Asymmetric algorithms can be brute-forced.
Curiosity to find a symmetric algorithm that doesn’t require
separate sender-receiver key agreement.
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Brute-forcing

The prime factors of a product of two large primes are
unique. Once you have factored the product, you have
broken the key.
This has led to larger and larger products.
If anybody finds a way of doing this efficiently, (and there is
no shortage of efforts), then it will severely compromised.
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Sender-receiver key agreement

We are looking for commutative filters with special
asymmetric properties.
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Wiener-Hopf inversion
A filter example
Enter Eve
Can Eve unravel m ?

Mechanics

Alice Bob
m ⊕ f → m ⊕ f

m ⊕ f ⊕ g ← m ⊕ f ⊕ g
m ⊕ f ⊕ g ⊕ f−1

m ⊕ g → m ⊕ g
m ⊕ g ⊕ g−1 = m
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Linear convolution

We use linear convolution * for ⊕

ej =

Lf−1∑
k=0

fkmj−k (1)

where e = {e0, e1, ..., ej , ..., eLf +Lm−1} is the output.
However, given m, e how do we find the inverse filter h =
f−1 such that h*f = i, the identity filter = (1,0,...,0), so that
h*f*m recovers the message m ?
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Wiener-Hopf inversion

First solved by the great American mathematician, Norbert
Wiener (1942)

Lh∑
t=0

ht

Lh+Lf−1∑
k=0

fk−t fk−j =

Lh+Lf−1∑
k=0

ik fk−j (2)

for j = 0, 1, .. , Lh − 1. The second sum on the left hand
side is the autocorrelation of the input filter whilst the right
hand side is the cross-correlation of the input filter with the
desired output, i.
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A filter example

Figure: An example of a convolving filter.
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Enter Eve the Eavesdropper

Alice Bob Eve
m ∗ f → m ∗ f m ∗ f
m ∗ f ∗ g ← m ∗ f ∗ g m ∗ f ∗ g

m ∗ f ∗ g ∗ f−1

m ∗ g → m ∗ g m ∗ g
m ∗ g ∗ g−1 = m
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Can Eve unravel m ?

Eve has three equations and three unknowns !
But Eve is inverting m*f or m*g whereas Alice and Bob are
inverting f and g.
In the Fourier domain e = m*f is the same as E = MF
So Alice and Bob are constructing the inverse to F (or G),
M = E/F
Eve is constructing the inverse of MF, so we design the
message m to be ill-conditioned, (so M has zeroes in the
frequency domain), e.g. Alice constructs m * (1,0,...,-1) * f.
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Nearly but no cigar
Just to make sure
A random text exchange
Eavesdropping now fails

Let’s send a message

Message
BANDPASS
0.0000000
18.000000
128.00000
72.000000
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Nearly but no cigar

Figure: A complete Wiener-Hopf transaction. a) is the original, b) is
m*f, c) is m*f*g, d) is m ∗ f ∗ g ∗ f−1, e) is Eve’s effort at reconstructing
m and f) Bob’s effort knowing g.
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Nearly but no cigar
Just to make sure
A random text exchange
Eavesdropping now fails

Just to make sure

Alice and Bob add in random text starting after the
message.
This means that Eve only sees part of the m*f exchange
(up to where r starts) and so on.
Because the filters are minimum phase, so are their
inverses and their correct inversion does not corrupt the
original message m. Approximate inversion corrupts m
badly.
This destroys Eve’s ability to extract anything useful.
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Nearly but no cigar
Just to make sure
A random text exchange
Eavesdropping now fails

Just to make sure - random text

Alice Bob
(m ∗ f ) + r → (m ∗ f ) + r

((m ∗ f ) + r) ∗ g + s ← ((m ∗ f ) + r) ∗ g + s
(((m ∗ f ) + r) ∗ g + s) ∗ f−1

m ∗ g + r ∗ g ∗ f−1 + s ∗ f−1 → ... ∗ g−1

m + r ∗ f−1 + s ∗ f−1 ∗ g−1
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Eavesdropping now fails

Figure: A complete Wiener-Hopf transaction with confounding
randomised text added by both Alice and Bob. a) is the original, b) is
m*f+r, c) is (m*f+r)*g+s, d) is ((m ∗ f + r) ∗ g + s) ∗ f−1, e) is Eve’s
effort at reconstructing m and f) Bob’s effort knowing g.
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Brute forcing, non-uniqueness and sensitivity
Cribs
Person in the Middle
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Brute forcing, non-uniqueness and sensitivity

Inversion is non-unique !
For messages short with respect to the filter, redundancy is
such that there exist a number of filters, f’ such
m ∗ f = mfalse ∗ f ′.
For example, there exist filters f, f’ such that
“9999888877776666” * f = “1234567856781234” * f’.
Algorithm is very sensitive. Change in 3rd decimal place of
just one filter element renders the filtering unreadable.
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Cribs

If Eve ever gets a (m, m*f) pair it is trivial to extract f.
However, computing f is very fast so we just use a different
one for each message.
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Person in the middle

There remains the problem of person in the middle attacks
These haunt all cryptographic systems (by definition) and
modern technology depends on the sanctity of DNS.
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Efficiency

Text Transaction time (s.)
Licence agreement (1.4 Kb.) 0.3

Hamlet (182.6 Kb.) 4.1
King James Bible (4445.3 Kb.) 130.3
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Conclusions

A symmetric algorithm which is robust against
eavesdropping has been presented
Unusually, it is non-unique
It is probably immune to dictionary, brute force or crib
attacks
Protection from person in the middle attacks still depends
on outside agencies.
More at http://www.leshatton.org/
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