
Version 2nd Apr 97, for CS & E

THE T-EXPERIMENTS: ERRORS IN
SCIENTIFIC SOFTWARE

L. HATTON
Oakwood Computing,

Oakwood House, 11, Carlton Road, New Malden, Surrey, KT3 3AJ
Tel/Fax: +44-181-336-1151

lesh@oakcomp.demon.co.uk, http:/www.oakcomp.demon.co.uk/

ABSTRACT

This paper covers two very large experiments carried out concurrently between 1990 and 1994,

together known as the T-experiments. Experiment T1 had the objective of measuring the

consistency of several million lines of scientific software written in C and Fortran 77 by static

deep-flow analysis across many different industries and application areas, and experiment T2

had the objective of measuring the level of dynamic disagreement between independent

implementations of the same algorithms acting on the same input data with the same parameters

in just one of these industrial application areas.

Experiment T1 showed that C and Fortran are riddled with statically detectable

inconsistencies independent of the application area. For example, interface inconsistencies

occur at the rate of one in every 7 interfaces on average in Fortran, and one in every 37

interfaces in C. They also show that Fortran components are typically 2.5 times bigger than C

components, and that roughly 30% of the Fortran population and 10% of the C population

would be deemed untestable by any standards.

Experiment T2 was even more disturbing. Whereas scientists like to think that their results

are accurate to the precision of the arithmetic used, in this study, the degree of agreement

gradually degenerated from 6 significant figures to 1 significant figure during the computation.

The reasons for this disagreement are laid squarely at the door of software failure, as other

possible causes are considered and rejected.

Version 2nd Apr 97, for CS & E

Taken with other evidence, these two experiments suggest that the results of scientific

calculations involving significant amounts of software should be treated with the same measure

of disbelief as an unconfirmed physical experiment.

Version 2nd Apr 97, for CS & E Page 3

1. INTRODUCTION

The results of the two experiments described in this paper should intrigue and perhaps perturb

any scientific user of software interested in the accuracy of their results. They are based on

pure measurement rather than speculation or anecdote and contain no abstruse theory

whatsoever. Together they paint a rather gloomy picture, suggesting that the accuracy we

actually get in scientific computation is rather less than we would like or expect, with all the

attendant risk to the development of our theories. However, detection is half the battle, and

enough insight emerged to suggest ways forward, although the path is not easy. Note that the

experiments described here cover only serial code and not parallel code, although I believe

(without supporting data) that the situation is no better for parallel systems, particularly of

course when they simply lay out serial computation across an array or matrix of processors.

When we test our scientific software, we frequently find errors. We correct them until there

comes a great day, when our precious scientific thought is encapsulated in a piece of robust and

above all, absolutely error-free software :-). Then some time later, we find another error, and a

little time after that, another, and so on. So how good was it all in the first place ? There are

two ways of assessing this. First of all, many software failures, perhaps as many as 40%,

(Hatton 1995), are statically detectable as faults. In other words, they can be found without

running the program first. In this sense, a fault is defined to be a misuse of the language which

will very likely fail in some context. In Fortran, the scientist will be familiar with dependence

on uninitialised variables, inconsistent interfaces and so on. In C, the delights of pointers add

many new ways of getting it all wrong. In C++, even more sybaritic delights await the

unwary, with the language rapidly becoming so complex that any underlying science seems

almost irrelevant amidst the magic kingdom of polymorphism, inheritance, object-orientation,

over-loading, virtual methods, encapsulation and vast numbers of hidden and frequently

surprising actions performed on behalf of the unwitting scientist by a grateful compiler. In

contrast, predicting the existence of a new sub-atomic particle seems a relatively straightforward

exercise.

The second way of assessing the effects of software failure is to run it and see giving a

dynamic perspective. Unfortunately, scientists tend to swap code rather than relying on the

independent verification they pursue naturally for an experimental result, thus reducing the

opportunities for carrying out such an experiment. Fortunately commercial rivalry comes to the

rescue in the form of seismic data processing, where scientists have to develop their software in

conditions of strict competitive confidentiality. This has naturally evolved parallel independent

implementations of the same algorithms. Even more fortunately, significant parts of this

Version 2nd Apr 97, for CS & E Page 4

software have been developed from identical published mathematical signal-processing

specifications greatly reducing a significant source of uncontrollable variability.

In order to compare these two views of software, two concurrent experiments to measure

their effects were conducted in the period 1989-1994, although I never realised how long they

would take to do enough to get a good picture. What started as an interesting hobby messing

around with other people's code finished up as two 4 year long experiments, which became

known as the T experiments. The relationship between the two T-studies is shown in Figure 1.

Multi-industry study using static deep-flow
analysis, 1990-1994

... Nuclear Earth Science Aerospace Control ...

Single-industry study
using dynamic N-version
techniques, 1990-1994

Figure 1:T-diagram illustrating the relationship between experiment T1, which concerns static

measurements along the cross-bar of the T and experiment T2, which concerns the vertical bar

of the T, covering dynamic measurements.

2. EXPERIMENT T1: STATIC ANALYSIS RESULTS

Experiment T1 focused on static measurements of software whereby the source code is

automatically checked for consistency but not run. This corresponds to the cross-bar of the T.

The codes studied were submitted for analysis mostly by companies, but also by government

agencies and universities from around the world and cover some 40 application areas including

for example graphics, nuclear engineering, mechanical engineering, chemical engineering, civil

engineering, communications, database, medical systems and aerospace. Both safety-critical

and non safety-critical environments as well as environments with and without quality systems

were comprehensively represented. The age of the codes is evenly spread between 1 and 20

years old. All codes submitted are "mature" in the sense that they are in regular use by their

intended users. The details of the populations as of 31st July, 1995 were:

Version 2nd Apr 97, for CS & E Page 5

Fortran 66/77

- Total lines analysed 3,305,628
- Number of participating organisations 47
- Largest package in lines 770,444
- Smallest package in lines 806
- Average package size in lines 60,102
- Total packages 55
- Number of different disciplines 20
- Total executable lines 1,737,536

C

- Total pre-processed lines analysed 1,928,011
- Number of participating organisations 26
- Largest package in lines 431,655
- Smallest package in lines 361
- Average package size in lines 28,353
- Total packages 68
- Number of different disciplines 41
- Total executable lines 1,389,712

So what exactly are we looking for ? In static deep-flow analysis, we are looking for

inconsistent or undefined use of language. A deep-flow analysis tool studies code rather like a

compiler but its back-end is a knowledge base of items known to lead to failure rather than an

object-code generator. It might surprise the scientist, who relies on a tool which is thousands

of years old and supported by rigorous and proven methods, i.e. mathematics, that the

programming language he or she uses to express the science numerically is considerably less

well-defined. It is therefore a common fallacy, that if something compiles, it is OK, apart from

errors of the mind. In this study, we carried out three forms of analysis:

• Unsafe dependency analysis by measurement of dependence on unsafe features of the

programming language. Such features fall into two categories: those explicitly defined as

unsafe by the standard itself, (e.g. ISO C lists 119 constructions of uncertain definition),

and a rather larger number of features which have been found by experience to be unsafe or

to lead to unsafe behaviour, even though apparently well-defined. Some items are

language-independent at least in part and occur in both C and Fortran, for example, any

dependence on uninitialised variables. Other items are language-dependent such as the well-

known problem in C of casting a pointer to a narrower integral type. The occurrence rate of

several hundred items was measured in both C and Fortran.

• Programming standards adherence. This is unlikely to be of interest to readers of this paper

and will not be considered further beyond noting that experiment T1 proved conclusively

that attempts to maintain programming standards were risible.

• Population complexity analysis using a range of well-documented software measures.

Version 2nd Apr 97, for CS & E Page 6

All of the measures are based on the source code itself rather than the design and such

measures are therefore entirely repeatable.

The submitted codes were analysed by two static deep-flow analysers, QA C for C source

code and QA Fortran for Fortran 66/77 source code. The biggest C package analysed in one

pass was Motif™ 1.1.4 and X11R5 together during an interface consistency check, totalling

some 700,000 source lines, (which revealed a total of 1,885 interface faults). The parser of the

C analysis tool, QA C, is based on the model C implementation, which was amongst the first to

be validated by the British Standards Institute. The biggest Fortran package analysed in one

pass, a seismic data processing package, totalled some 770,444 source lines.

Although only C and Fortran were studied here, users of other languages should not assume

that they are therefore free of any of the problems reported here. All languages have similar

problems of one kind or another, (Ghezzi and Jazayeri 1982), (Hatton 1995) with politically-

and accidentally-induced ambiguity and redundancy both rife.

It should be re-emphasised that the measurements are based on huge amounts of source

code in day to day use which its developers believe to constitute fully-tested products.

Resulting static fault rates

Precise occurrence rates in occurrences per lines of code were published in part in (Hatton

1995), but brevity forbids us from requoting these results here. Instead, each statically

detectable unsafe item in a list containing around 100 such items was categorised as to severity

between 5 and 100% where 5% represents a relatively low probability that such a fault will

mature into a failure, (for example casting a pointer to an integral type in C) and 100%

represents effective certainty that this will take place in a reasonable software life-cycle, (for

example, unconditional reliance on an uninitialised variable). Of course there is no guarantee

that any particular fault will mature into a failure but independent observers were in close

agreement as to the severity category for each item, and the weighting is intended only to give

some kind of risk factor.

For C, the results are shown as a function of industrial application area in Figure 2, whilst

equivalent figures for Fortran 77 are shown in Figure 3.

Version 2nd Apr 97, for CS & E Page 7

W
e

ig
h

te
d

fa

u
lt

s
p

e
r

1
0

0
0

lin

e
s.

0

5

1 0

1 5

2 0

2 5

G
ra

ph
ic

s

G
en

er
al

E
le

c-
e

n
g

D
es

ig
n

S
ys

te
m

C
o

n
tr

o
l

D
at

ab
as

e

G
ra

ph
ic

s

P
a

rs
in

g

P
a

rs
in

g

In
su

ra
n

ce

U
ti

li
ti

e
s

U
ti

li
ti

e
s

U
ti

li
ti

e
s

C
o

n
tr

o
l

C
om

m
s

C
om

m
s

Figure 2: Weighted fault rates per 1000 lines of code for a wide variety of commercially

released C applications plotted as a function of industry.

W
e

ig
h

te
d

fa

u
lt

s
p

e
r

1
0

0
0

lin

e
s.

0

5

1 0

1 5

2 0

2 5

ge
ne

ra
l

e
lc

-e
n

g

E
a

rt
h

S
ci

p
a

rs
in

g

C
ad

C
am

C
he

m
M

od

E
a

rt
h

S
ci

e
lc

-e
n

g

fl
d

-e
n

g

m
ch

-e
n

g

m
ch

-e
n

g

n
u

c-
e

n
g

n
u

c-
e

n
g

o
p

e
r-

rs

C
ad

C
am

th
e

-p
h

ys

G
eo

de
sy

A
er

os
pa

ce

ge
ne

ra
l

Figure 3: Weighted fault rates per 1000 lines of code for a wide variety of commercially

released Fortran 77 applications plotted as a function of industry.

Version 2nd Apr 97, for CS & E Page 8

These two figures have the same vertical scale. As can be seen, the patterns are essentially

similar in that there is no discernible relation with application area, (or with integrity level when

the data are inspected more closely). The only essential difference seems to be that when a

Fortran 77 package is bad, it is really bad, as exemplified by the nuclear engineering code about

2/3 the way along the applications axis of Figure 3. This package climbed to an awe-inspiring

140 weighted static faults per 1000 lines of code, and in spite of the aspirations of its designers,

amounted to no more than a very expensive random number generator.

Complexity results

A vast amount of complexity data emerged from this study. Distributions for some 40

published metrics were extracted, however only two of the most well-known are shown in

Table 1.

Table 1 This shows a simple distribution of two testability metrics for both the C and Fortran
populations

Statistic Fortran C

Percentage of population with more than 200 static
paths.

28% 10%

Percentage of population with more than 10
decisions

32% 8%

The static path count is essentially a count of the paths through a program assuming that all

predicates are independent. It is related to the NPATH metric of (Nejmeh 1988), who

recommended a value of not more than 200. The cyclomatic complexity first appeared in

(McCabe 1976), who recommended a value of not more than 10.

A few of the more amusing hall of fame statistics were:

Deepest level of nesting encountered in C 121

Largest number of decisions encountered in one C component 2224

Largest number of external variables encountered in one C component 134

Largest number of decisions encountered in one Fortran component 642

Greatest number of static paths encountered in C and Fortran 500,000,000

Greatest number of knots encountered in one Fortran component: 95031

Version 2nd Apr 97, for CS & E Page 9

Here a component is a function in C and a function or subroutine in Fortran. Note also that in

the last statistic, a knot is a crossing of control flow. A value of 50 represents densely woven

interlocking logic so one can only speculate as to what was going through this particular

author’s mind at the time, perhaps something illegal.

Static comparison of C and Fortran 77

Table 2 summarises some basic comparisons between the use of the two languages.

Table 2. Some basic comparison parameters between the two languages

Statistic Fortran C

Average executable lines per function or
subroutine

106 40

Average number of function or subroutine
references per interface fault.

7 37

Average number of arguments per function or
subroutine call

6.1 2.4

Average number of executable lines per serious
fault.

86 205

Ratio of executable lines to total lines 0.53 -

Ratio of executable lines to total pre-processed
lines

- 0.72

As can be seen, Fortran functions or subroutines tend to be about 2.5 times larger than their C

counterpart. Interestingly, this is achieved by an interface having around 2.5 times more

parameters, showing that the ratio of executable lines per function to parameters per function is

very similar for the two languages. In terms of serious faults, which is that set of faults

deemed to be likely to cause a serious problem in some environment, C is more than twice as

good. Although there is a subjective element to this, what was deemed serious had a strong

consensus of agreement amongst experienced programmers questioned.

In C, note that function prototypes were well used only around 60% of the time and as a

result, interface faults accounted for about 24% of the total. In other words, if function

prototypes were mandated in all C functions, 24% of all serious faults would disappear. The

computational scientist should not use this as an argument in favour of C++ or Ada in which

they are mandated. A large number of new failure modes result from this action, which lack of

space prohibits further discussion here. The net result of changing languages appears to be that

Version 2nd Apr 97, for CS & E Page 10

the overall defect density appears to be about the same, (Hatton 1997). In other words, when a

language corrects one deficiency, it appears to add one of its own.

EXPERIMENT T2: DYNAMIC ANALYSIS RESULTS

Overview

Experiment T2 explored one of the application areas studied in T1, that of seismic data

processing in the Earth Science industry, in an exhaustive series of dynamic tests based around

the concept of N-version programming or diversity. A fuller description of this experiment first

appeared in (Hatton and Roberts 1994).

An overview of seismic data processing

Seismic data processing is the dominant tool in the search for oil and gas and is also used

extensively in earthquake studies and also in site surveys before the construction of major civil

engineering projects such as bridges and nuclear reactors.

A typical dataset might be perhaps 1011 bytes, or around 5 x 1010 digital values which arrive

at the data processing centre in various formats. Seismic data in its raw state is of quite poor

quality by the standards of most sciences and rarely exceeds a signal-to-noise ratio of 1. As a

result, this dataset is subjected to a large number of well-known mathematical and image-

processing operations. These include specialised statistical operations aimed at improving the

basic quality of the data by exploiting the high degree of redundancy as well as numerous

algorithms familiar to scientists in other numerate disciplines, for example, the multi-

dimensional Fast Fourier Transform, deconvolution of numerous kinds, wave-equation

techniques using finite-difference and other methods, the solution of very large ill-conditioned

sparse sets of linear equations, and many others. The aggregate effect is that each sample of a

seismic dataset is routinely subject to between 102 and 103 floating point operations. Putting

the above figures together yields a load of around 1014 floating point operations required to

process the data acquired by a typical marine seismic survey vessel over a period of 4 weeks.

Experimental design

Seismic data processing is carried out by successively applying 30 or so mathematical

processes to the input data. The output of each step is the input of the next, rather like a

conveyor-belt or pipeline, (c.f. (Hatton, Wright et al. 1988)). The first step was to partition the

algorithms into two categories:

Version 2nd Apr 97, for CS & E Page 11

• Published (i.e. unambiguous) algorithms. 14 such algorithms were placed on the main

sequence, (i.e. seen by all data) with a data comparison point (primary calibration point)

after the application of each algorithm.

• Proprietary (i.e. involving some ambiguity) algorithms. 20 such algorithms were arranged

to appear off the main sequence as branch algorithms with a data comparison point after

each (secondary calibration point), with only subsets of data seeing them. It is worth noting

that although they contain proprietary differences from package to package, they involve the

same physical process and are referred to synonymously by the end-user, the geoscientists.

The next stage of experimental design involved defining the user-disposable parameters

associated with each algorithm. Main sequence processes are characterised by a small number

of well-defined disposable parameters, and the existence of these alone with consistent

definitions in the various implementations, confirmed this view. In contrast, branch algorithms

allow more ambiguity, leading to a more diverse, although still closely-related set of disposable

parameters. After some considerable amount of work, a 46-page document was produced

which precisely defined the processing sequence and the exact values of all disposable

parameters, against which compliance was carefully checked.

The 9 individual packages represent several distinct software architectures and very different

machine environments from supercomputer to workstation. Although each one is typically

around 750,000 source lines, the current experiment probably illuminated only around 150,000

of these. (Note that an individual process requires on average 5000 lines or so to implement it).

Note that each participating company had a recognisable quality system and a written testing

policy, some of which were exceptionally thorough.

The input data in their raw form are effectively a three-dimensional matrix, (x,y,z=0,t),

recorded in the marine environment, where x is the surface profile direction, y is the distance

between the source and a particular transducer and t is time. There are perhaps 400 x-positions

and up to 200 y-positions and 2000 t-positions. Numerous windows of the data were defined

in which detailed statistical comparisons were performed to supplement other comparisons

performed on all the data.

The accuracy of the analysis software (also written in two independent versions) was

validated by the fact that the first primary calibration point, where the data is read from the tape,

Version 2nd Apr 97, for CS & E Page 12

is merely a publicly defined bit-shifting operation involving negligible floating point

computation in which the data is simply re-formatted and re-normalised from a floating point

format used by IBM (an industry standard in the seismic industry) to the host specific floating

point format. The analysis software showed that all packages (apart from two subtle errors

uncovered in two of them and later verified with their developers) agreed to within around

0.001%, the maximum precision available with single precision floating point.

Results

The results are fascinating and deeply disturbing. First and foremost, shifts of one or two in

the t-component of the seismic trace occur throughout the processed datasets. These occur

between different packages and in the same packages between different calibration points.

They are a manifestation of the well-known "one-off" array index problem (c.f. for example

(Koenig 1988)) and are obvious evidence of errors. Before differences were computed, all

these shifts were taken into consideration, as they would otherwise artificially exaggerate data-

point by data-point differences.

After removing the shifts, the normalised average absolute differences between the traces ,

fd, was computed using the following formula:

f d = 1

nx

1

ntx=1

nx

∑ 1

nct=1

nt

∑ adcxt . adcxt − 1

nc

adcxt
c=1

nc

∑

c=1

nc

∑ (1)

where adcxt is the amplitude at coordinate d, package c, trace x and time sample t. Note that

the summations were computed as trimmed means, with a trim factor of two means, to control

gross outliers which occurred periodically throughout the data, (c.f. (Tukey 1977)). All

amplitudes were pre-normalised to have a maximum absolute amplitude of 1 prior to data

analysis. There are many potential choices for computing the differences between the data.

Several were tried independently, but all gave the same qualitative behaviour and the central

attraction of the above method was that it gave values of around 5% when differences became

visually obvious, roughly correspondingly with the visual bandwidth of the eye on data of this

kind.

The statistic computed in equation (1) is averaged over all time. However, in order to see

whether agreement differed depending on the temporal properties of the data, estimates of this

statistic for around thirty t-subsets of the data, some including signal and some noise only, were

computed. The results lead to an averaged disagreement for each calibration point summarised

in Figure 4. They show that the data agrees to within 0.001% after being read from tape at the

first primary calibration point, coordinates 1 and 2, the re-formatting and re-normalising stage.

Version 2nd Apr 97, for CS & E Page 13

After this, agreement deteriorates steadily until calibration point 4 where there is a spread of

around 8%. Calibration point 5 is empty because the nature of the process means it cannot

affect the data, but between primary calibration points 6 and 10, the spread jumps dramatically

to around 30-100% with one or two even larger outliers. Interestingly this corresponds to

processes involving significant amounts of computation. After this point, there is a data

compression stage whose natural redundancy reduces the spread to around 20% and then things

deteriorate rapidly to a spread of around 100% at the coordinate where the geoscientist inspects

the data ! Note that the data compression stage reduces the overall number of t-subsets

substantially giving less calibration values between coordinates 11-14 than at coordinates 10

and earlier. Note also that only eight companies contributed at coordinate 8 and only four

companies at coordinate 12.

As was expected the spread of disagreement between secondary calibration points was 2-7

times worse than that for the primary calibration points. This is suggestive that specification

differences further contribute to the overall disagreement just as inadvertent implementation

errors do in the case of the primary calibration points.

Detailed analysis of the disagreement showed also that it is spatially non-random and tends

to track the underlying data. Furthermore, the non-randomness was not due to a single

consistently deviant package, but spread amongst the packages, with different packages

assuming the dubious honour of being most deviant at different calibration points. To illustrate

this, Figure 5 shows the overall percentage of data at each processing coordinate for which a

particular company's package represents the furthest outlier. The size of the circles gives the

percentage. Although package 7 gives a consistently poor performance, other packages come

and go as can be seen by the deterioration in package 6 from processing coordinate 7 onwards,

and the improvement in packages 1 and 2 after a shaky start. It was also observed that the

results from the packages are non-Gaussian distributed and cluster into distinct groups with

outliers.

Finally, to see the data from the geoscientists point of view, Figure 6 shows the 9 different

views of the same data at primary coordinate 14, the stage at which the process of data

interpretation by the geoscientist begins. From a geoscientists's point of view however, these

differences are not subtle, corresponding to alternative but equally legitimate lithological views

which can fundamentally affect the conclusions reached as to the nature of potential

hydrocarbon accumulations. This has been confirmed independently by showing the datasets to

a number of experienced geoscientists in different companies not directly affiliated with this

Version 2nd Apr 97, for CS & E Page 14

study, (Hatton and Roberts 1992). Put simply, this could lead to a 20 million dollar well being

drilled in the wrong place !

Feedback

It is of obvious interest to see if obvious discrepancies in the compared datasets could be related

back to tangible software failure. We have already seen from the presence of "one-off" errors

that software failure is present, but causal experiments whereby discrepancies can be observed,

fed back to the developers, related to specific faults which when corrected cause the

discrepancy to disappear, are so much more appealing to the scientific method. Such feedback

was attempted several times in different packages and in all cases led to the discovery of a fault

causing the failure whose correction caused the discrepancy to disappear. All of these faults

had been in their respective packages for some time. The reader should refer to (Hatton and

Roberts 1994) for more details.

Precision of the results

It is interesting to compare the loss of precision reported in experiment T2 due to software fault,

with the loss of precision due to other better understood sources of error. Table 3, indicates the

approximate number of significant figures of accuracy associated with various experiments or

environments. It can be seen, that the departures reported here due to software fault probably

dwarf any of the other sources of fault thereby pointing out a problem which needs urgently

resolving before we even think of tackling any of the others.

Environment Number of significant figures

Agreement of single-precision floating point arithmetic, (32 bit) 6

Agreement when running the same reflection seismic data
processing package on different architectures and compilers,
given the same data, (Hatton, Wright et al. 1988).

4

Agreement when using a single processing package while the
package is subjected to continual enhancement, (the norm),
(Hatton and Roberts 1994).

1-2

Agreement when processing the same data through
independently-developed different implementations of the same
seismic data processing algorithms, running on different
architectures and compilers, (Hatton and Roberts 1994).

1

Table 3: This table shows the deterioration in agreement with different environments for

processing reflection seismology data as cited in the text. Unfortunately, modern seismic data

processing interpretation by geologists relies on 2-3 significant figure accuracy, for some of its

Version 2nd Apr 97, for CS & E Page 15

deductions. As can be seen, this is not available in general, in fact, it is about an order of

magnitude better than is achievable.

How does static fault rate and dynamic failure correlate ?

To answer this quite simply, we don’t know, without more experimentation. However, there

is good indirect evidence from other sources such as (Pfleeger Lawrence and Hatton 1997) that

the kind of static fault we are measuring in experiment T1 is highly correlated with the kind of

dynamic failure observed in experiment T2. Figure 7 illustrates the occurrence rate in the

population at large of serious static faults, (those with above 50% ascribed severity in

experiment T1, which corresponds to about half of all the static faults measured), described as

‘average’ dynamic testing, compared with the serious static fault rate measured in the much

more thoroughly tested system described by (Pfleeger Lawrence and Hatton 1997).

The ubiquity of the static faults reported in experiment T1 suggests therefore that there is

every reason to believe that the dynamic failures occuring in the earth science study also occur

in other application areas. It would certainly be stretching credulity a little far to think that only

the application area studied dynamically in experiment T2 was afflicted with these failures.

S
er

io
us

st

at
ic

fa

ul
ts

pe

r
K

LO
C

0

0.5

1

1 .5

2

2 .5

3

3 .5

4

Average
dynamic
testing

Thorough
dynamic
testing

Figure 7: A comparison of the serious static fault rate in the population at large, compared with

a much more thoroughly dynamically tested system. This supports the view that static fault

measurement and dynamic failure occurrence are strongly correlated.

Version 2nd Apr 97, for CS & E Page 16

Conclusions

The evidence for the observed disagreement resulting from software problems is overwhelming

and is summarised in more detail in (Hatton and Roberts 1994), so here we will content

ourselves with attempting to summarise the lessons from both T-experiments. These are:

• Commercially released C and Fortran software are provably full of statically detectable

faults, irrespective of the existence of any quality system, level of criticality, or application

area. In fact, there are about 8 serious faults per 1000 executable lines in C which are

statically detectable in commercially released code and about 12 per 1000 executable lines in

Fortran. This is almost certainly true for other languages also. If a language contains a

hole, programmers will fall into it. All languages contain holes.

• In one application area which emerged better than the average in terms of statically

detectable fault in T1, the disagreement between 9 different implementations of the same

published mathematical algorithms written in the same language using the same input data

and same disposable parameters is much worse than anticipated, and in this case reduces

output data agreement to around 1-2 significant figures. In comparison, porting the same

software to different machines and using the same data gave 4 significant figures of

agreement according to (Hatton, Wright et al. 1988). So it isn't the compiler or the

hardware implementation. It is interesting to note that the Earth Science industry is now

beginning to use techniques which require at least 3 significant figure accuracy in order to

find ever-smaller hydrocarbon accumulations. This is clearly a questionable venture given

the current state of affairs.

• The disagreement between algorithms which have a somewhat less well-specified definition

is several times worse than those which are defined formally using mathematics. This is

very worrying given the poor specification common in many software implementations.

• Fortran functions are on average about 2.5 times bigger than their C counterparts, but with

correspondingly more parameters passed

What options are open to the computational scientist ? We could do several things:

a) Switch languages. However, given that all languages contain problems, this seems

definitely a case of jumping out of the frying-pan into the fire. For example, one of the

Version 2nd Apr 97, for CS & E Page 17

languages studied here is C. As reported by (Hatton 1995) and (Pfleeger Lawrence and

Hatton 1997), C is responsible for producing some of the most reliable systems ever

written. Furthermore, modern languages tend to produce similar levels of defect density,

(Hatton 1997).

b) Switch paradigms in the hope that it will all magically come together. However, there is no

data to my knowledge anywhere in the world to suggest that, for example, object-

orientation leads to more accurate or reliable systems. In fact, such evidence as there is

suggests that there is no such benefit.

c) Whenever a computational result is announced, attempt to verify it by at least one

independent software implementation. This is a step in the right direction.

d) Instead of using parallel systems to compute things faster, use them to make independent

computations of the same thing to improve confidence.

e) Only use safe well-defined subsets of languages, e.g. (Hatton 1995).

On this somewhat polemic note, I will finish with an open plea to computational scientists. All

but the most trivial of programs is overwhelmingly likely to contain faults, however well

'tested', and the underlying failure rate is virtually unchanged in the last 15 years, (Schwartz

1991). I understand all too well the urgency to make progress but simply swapping software

on whose calculations you depend is inherently high-risk. Even when independent

implementations agree, there may still be problems as reported for example by (Knight and

Leveson 1986), but at least its a considerable step in the right direction. I am sure that the many

capable scientists who produced the code analysed here would agree. All the evidence of the T-

experiments suggests that the current state of software implementations of scientific activity is

rather worse than we would ever dare to fear, but at least we are forewarned, and can therefore

do something about it.

ACKNOWLEDGEMENTS

I would first and foremost like to acknowledge Andy Roberts, my consummately capable

collaborator at Enterprise Oil company in experiment T1. Many people including my colleagues

Version 2nd Apr 97, for CS & E Page 18

at Programming Research Ltd. where this work was done, contributed to experiment T2 and I

would like to thank them all. Finally, I would like to thank all the companies who took part.

We were all conscious that our sole purpose was to find faults, something which no scientist

finds easy to accept, but from which we can all learn something.

REFERENCES

Ghezzi, C. and M. Jazayeri (1982). Programming Language Concepts . New York, John Wiley

& Sons.

Hatton, L. (1995). Safer C: Developing for High-Integrity and Safety-Critical Systems. ,

McGraw-Hill.

Hatton, L. (1997). “Re-examining the fault density - component size connection.” IEEE

 Software 14(2)(March/April 1997): p. 89-97.

Hatton, L. and A. Roberts (1992). Analysing the agreement between seismic software

 packages: A Seismic Software Calibration Experiment. 62nd. S.E.G., New Orleans, Society of

Exploration Geophysicists.

Hatton, L. and A. Roberts (1994). “How accurate is scientific software ?” IEEE Transactions

 on Software Engineering 20(10 (October 1994)): p. 785-797.

Hatton, L., A. Wright, et al. (1988). “The Seismic Kernel System - A Large-Scale Exercise in

Fortran 77 Portability.” Software Practice and Experience 18(4): 301-329.

Knight, J. C. and N. G. Leveson (1986). “An experimental evaluation of the assumption of

independence in multi-version programming.” IEEE Transactions on Software Engineering

12(1): 96-109.

Koenig, A. (1988). C Traps and Pitfalls . Reading, Mass., Addison-Wesley.

McCabe, T. A. (1976). “A complexity measure.” IEEE Trans Soft. Eng. SE-2(4): 308-320.

Nejmeh, B. A. (1988). “NPATH: A measure of execution path complexity and its

applications.” Comm ACM 31(2): 188-200.

Pfleeger Lawrence, S. and L. Hatton (1997). “Investigating the influence of formal methods.”

 IEEE Computer, Feb. 1997 30(2): pp 33-43.

Schwartz, E. I. (1991). Turning software from a black art into a science. Business Week : p.

80-81.

Tukey, J. W. (1977). Exploratory Data Analysis . Reading, Mass., Addison-Wesley.

