
Title Slide

“The role of empiricism in improving the reliability of
future software"

Les Hatton

CISM, Kingston University
L.Hatton@kingston.ac.uk, lesh@oakcomp.co.uk

Version 1.1: 25/Aug/2008

TAIC 2008, 29-08-2008
.

mailto:L.Hatton@kingston.ac.uk

Copyright Les Hatton, 2008- Slide 2

Overview

“Good tests kill flawed theories; we remain
alive to guess again”

“Science must begin with myths, and with
the criticism of myths”

Karl Popper 1902-1994

Copyright Les Hatton, 2008- Slide 3

Overview

Some history
Software metrics, the bad, the worse and
the ugly
Scale-free behaviour and statistical
mechanics
Some more useful empirical results

Copyright Les Hatton, 2008- Slide 4

Fashion …
languages, bloody languages

In my career, I have been forced to write programs in:-
Focal
Atlas Autocode
Algol
Various assemblers, FPS microcode, MVS JCL, SEL firmware
Fortran 66, 77, 90
C
Pascal, Occam
Ada (briefly)
C++, Java 1 and 2
Various scripting languages, PHP, Perl, Tcl/Tk, Bash, Javascript,
MySQL, …
and back to C again, (this time from choice)

Copyright Les Hatton, 2008- Slide 5

Fashion …
incomprehensible tomes

Language Typical number of pages
Java 1,200
PHP 900

Javascript (Have fun with …) 1,000
C++ standard 808

C++ book 1,400

C book 250

My beloved complete
Feynman Lectures on Physics

1,500

Copyright Les Hatton, 2008- Slide 6

Fashion …
paradigms, bloody paradigms

In the final year at Kingston 2008, third year
projects used

C, C#, C++, Java, Perl, PHP, MySQL, XML, HTML,
XHTML, VB.Net on XP, Mac OS X, Linux, Vista with
Eclipse, Netbeans, Ant, JWSDP, Glassfish, Linden script,
DreamWeaver, Flash, Developer Studio.Net and a few
others I can’t recall.

This is to satisfy the needs of industry as if they had
any idea what they wanted.

Copyright Les Hatton, 2008- Slide 7

Fashion …
inadequate statistical reasoning

Very few papers attempt to establish
significance for their results using standard
methods
A typical result might read A > B therefore A is
(better / worse – substitute as appropriate) than
B.

Copyright Les Hatton, 2008- Slide 8

And the result …

In the USA …
• 01/08/2008 US Office of Management and Budget

have identified approximately 413 Government
projects totalling at least $25 billion which are
poorly planned, poorly performing or both.

• http://blogs.spectrum.ieee.org/riskfactor/2008/08/

Copyright Les Hatton, 2008- Slide 9

and …

A small selection from the UK:-
• 25/07/2008 BBC Radio Humberside system failure delays radio transmissions.
• 31/07/2006 Software failure hits 80 National Health Service Trusts
• 20/08/2006 Failure in software caused Western England homes to run out of water.
• 20/10/2005 Another Post Office systems failure delayed post
• 03/05/2005 Systems failure delayed ambulances in Western England
• 12/04/2005 Child Support Agency in crisis because of problems with new system
• 11/03/2005 Banking failures invalidate PIN cards
• 2000 (twice), 2002 (twice), 2004 and 2005. Air traffic control systems failures in South East

England leading to many delays. The 2004 one took the whole country out.
• 22/12/2004 Post Office systems delayed pension payments
• 23/08/2004 Benefit system (again)
• 06/09/2003 Software failure disrupts British Airways flights world-wide
• 17/10/2001 More than 60% of records on Police Criminal Record Check found to be inaccurate
• 20/03/2001 GBP77m immigration service computer system scrapped
• 25/01/1999. Benefit system chaos due to software failure.

Copyright Les Hatton, 2008- Slide 10

And a day in the life of a mail
server (26-Aug-2008) …

Event # occurrences
Received messages 47,267

Rejected as non-compliant - 32,501
Silently discarded as junk - 13,722

Content filtered spam / scam - 924

Trojans - 22

Delivered (to 6 domains) 98 (0.2%)

Root dictionary attacks 160

Copyright Les Hatton, 2008- Slide 11

Some experimental progress

Tichy (1998) “Should computer scientists
experiment more ?”
The work of Vic Basili, Shari Pfleeger and
collaborators
Journal of Empirical Software Engineering
(2002-) is an important step forward

Copyright Les Hatton, 2008- Slide 12

Overview

Some history
Software metrics, the bad, the worse and
the ugly
Scale-free behaviour and statistical
mechanics
Some more useful empirical results

Copyright Les Hatton, 2008- Slide 13

Some examples of ‘metrics’

The goto statement
Naur (1963), Dijkstra (1968) and hundreds of others
Prohibited in Simula, Occam
Banned by MISRA C (1998,2004), ESA Ada (1998), JSF
C++ (2005),

if … else if … with no else, (MISRA, JSF)
Maximum depth of control nesting, (ESA)
Maximum cyclomatic number, (most use this)
Perhaps 40 or so in general use.

Copyright Les Hatton, 2008- Slide 14

Metrics
Where do we start ?

Need a project which:-
Is large to permit statistical significance
Mature so that effects will have appeared if present
Well documented defect history
Availability of source code through entire life-cycle
including all updates
Well-specified subject area so that defect definition
is as precise as possible.

Copyright Les Hatton, 2008- Slide 15

Metrics
Where do we start ?

Candidate 1: NAG Fortran Library 1970-2000
266,123 XLOC in 3,659 subroutines
Development history 1970-1999
All defect data embedded in code
Analysed source from 13 out of 19 Marks
Scientific subroutine library with excellent specs.

Candidate 2: NAG C library, 1990-1999
Developed from Fortran and with similar specs

Copyright Les Hatton, 2008- Slide 16

Metrics
Where do we start ?

Candidate 1: NAG Fortran Library 1970-2000
Full parse of Fortran, extracted 19 metrics

Candidate 2: NAG C library, 1990-1999
Full parse of C, extracted 7 metrics

Linear regression, then Principle Component
Analysis then smoothing to find any patterns

Copyright Les Hatton, 2008- Slide 17

Lesson 1:
Cyclomatic complexity effectively useless

See also:-
Woodward et al
(1979) (and van der
Meulen (2008) on a
very large sample).

Copyright Les Hatton, 2008- Slide 18

Lesson 2:
No metric strongly correlated

This is typical …

Copyright Les Hatton, 2008- Slide 19

Lesson 3:
PCA – a very confused picture

Principle eigenvector

Copyright Les Hatton, 2008- Slide 20

Lesson 4:
Some metrics weakly anti-correlated

Both are significant at the 5% level and behave
opposite to the accepted doctrine

Copyright Les Hatton, 2008- Slide 21

However, Lesson 5:

With smoothing, there is clear evidence that the
number of defects d ~ x ln x where x is the number of
executable lines of code.

NAG Fortran and NAG C, Hopkins and Hatton (2008). See also Lipow (1982)

Copyright Les Hatton, 2008- Slide 22

Overview

Some history
Software metrics, the bad, the worse and
the ugly
Scale-free behaviour and statistical
mechanics
Some more useful empirical results

Copyright Les Hatton, 2008- Slide 23

What is scale-free behaviour ?

In this context, scale-free behaviour refers to a
phenomenon whose frequency of occurrence is
given by a power-law.
Consider word-counting in a document. If n is the
total number of words in a document and ni is the
number of occurrences of word i, then it is observed
(originally by Zipf (1949)), that for many texts,

pi i
cf = where c, p are constants and

n
n

f i
i ≡

Copyright Les Hatton, 2008- Slide 24

What is scale-free behaviour ?

pi i
ncn =Re-writing as

This is usually shown as

ipncni ln)ln(ln −=

which looks like
ln ni

ln i

and sometimes

Copyright Les Hatton, 2008- Slide 25

What is scale-free behaviour ?

pi i
ncn =

Gives

Summing and re-arranging

))1(ln5772.0(2t
Ottn ++=

where n is the total number of words and t is the
total number of distinct words

For systems with this behaviour we can predict the
total length from their ‘vocabulary’.

for p = 1

Copyright Les Hatton, 2008- Slide 26

What is scale-free behaviour ?

Written texts …

Actual length / Zipf length

0
1
2
3
4
5
6
7
8

K
in

g
Ja

m
es

B
ib

le

Th
e

K
or

an

S
w

ed
is

h
B

ib
le

(in
 S

w
ed

is
h)

Ta
m

in
g

of
 th

e
sh

re
w

H
en

ry
 V

M
ac

be
th

Th
re

e
M

en
 in

a
B

oa
t

A
dv

en
tu

re
s

of
S

he
rlo

ck

U
S

A
C

on
st

itu
tio

n

E
ur

op
ea

n
C

on
st

itu
tio

n

C
om

m
on

V
ul

ne
ra

bi
lit

ie
s

Copyright Les Hatton, 2008- Slide 27

What is scale-free behaviour ?

NAG Fortran library, (Hopkins and Hatton 2008) …

Actual
length

Predicted length

Copyright Les Hatton, 2008- Slide 28

More examples

Physics:- specific heat of spin glasses at low temperature,
Caudron et al (1981)
Biology: Protein family and fold occurrence in genomes,
Qian et al. (2001)
Biology: Evolutionary models, Fenser et al (2005)
Economics: Income distributions, Rawlings et al (2004)
Software systems: incoming and outgoing references and
class sizes in OO systems, Potanin et al (2002)
Fractals also exhibit scale-free behaviour (Novak):-

http://cism.kingston.ac.uk/people/details.php?AuthorID=577

Studies of C systems also reveal scale-free behaviour (Jones)
http://www.knosof.co.uk/cbook/cbook.html

http://www.knosof.co.uk/cbook/cbook.html

Copyright Les Hatton, 2008- Slide 29

General mathematical treatment

Consider a general system of N atomic objects divided
into M pieces each with ni objects, each piece having a
property ei associated with it.

1 2 3 ….

nr,er

… M

∑
=

=
M

i
inN

1

Copyright Les Hatton, 2008- Slide 30

General mathematical treatment

!!...!
!

21 Mnnn
NW =The number of ways of organising this is:-

Stirling’s approximation + logs as usual gives:-

i

M

i
i nnNNW ∑

=

−=
1

lnlnln

In physical systems, we seek to find the most likely
arrangement by maximising this subject to two constraints

i

M

i
ienU ∑

=

=
1

∑
=

=
M

i
inN

1

and

Copyright Les Hatton, 2008- Slide 31

General mathematical treatment

0)(ln =WδUsing Lagrange multipliers and setting

leads eventually to the most likely (i.e. equilibrium)
distribution being given by

∑
=

−

−

=≡ M

i

e

e
i

i
i

i

e

e
N
n

p

1

β

β

where pi is the probability of piece i getting a share ei
of U and β is a constant.

Copyright Les Hatton, 2008- Slide 32

General mathematical treatment

To summarise

The equilibrium distribution of the ei subject to the
constraints

i

M

i
ienU ∑

=

=
1

∑
=

=
M

i
inN

1
and

∑
=

−

−

=≡ M

i

e

e
i

i
i

i

e

e
N
n

p

1

β

β

is

Copyright Les Hatton, 2008- Slide 33

Application to software systems

If we identify ei with the defect density (di/ni) in a component,
then the total number of defects in a software system is
given by:-

i

M

i
ienU ∑

=

=
1

(Note that this only introduces a term O(1/ni
2) in the Lagrange

reduction and is no worse than Stirling’s approximation.)

Copyright Les Hatton, 2008- Slide 34

General mathematical treatment

ln ni

ln i

However, how are pi distributed in real
software systems ?

Distribution in two large systems as they mature, i.e.
become quasi-equilibrated.

Copyright Les Hatton, 2008- Slide 35

Application to software systems

Averaged over 21 very different quasi-equilibrated
systems in Fortran, C and Tcl-Tk

β
i

i n
Cp ≈

These distributions are
classic power-law
behaviour and it
appears to be present
a priori

Copyright Les Hatton, 2008- Slide 36

Application to software systems

This is linear with statistical significance at least 1%

Copyright Les Hatton, 2008- Slide 37

General mathematical treatment

Bringing it all together, the number of defects in a system
is effectively frozen at release. So, as a system
approaches quasi-equilibrium subject to the constraints,

∑
=

−

−

=≡ M

i

e

e
i

i
i

i

e

e
N
n

p

1

β

β

∑
=

=
M

i
inN

1

and i

M

i
ienU ∑

=

=
1

Then a priori power-
law behaviour

β
i

i n
Cp ≈ +

=> ei ~ ln ni or di ~ ni ln ni

Copyright Les Hatton, 2008- Slide 38

Application to software systems

and this is what we appear to observe …

NAG Fortran and C libraries, Hatton and Hopkins (2008). See also Lipow (1982)

Copyright Les Hatton, 2008- Slide 39

Application to software systems

So this
appears
inevitable

Constraints on
size and defects

Power-law size
distribution

x ln x behaviour
of defect
density

These appear
to be fixed a
priori

Copyright Les Hatton, 2008- Slide 40

Application to software systems

Stirling’s approximation in the development of the
predicted equilibrium state depends on the N and the ni
being large. It has however long been known, (Feynmann
and others) that the approximation is surprisingly good in
physical systems when these are not so large.

Copyright Les Hatton, 2008- Slide 41

Overview

Some history
Software metrics, the bad, the worse and
the ugly
Power-law behaviour and statistical
mechanics
Some more useful empirical results

Copyright Les Hatton, 2008- Slide 42

Some more useful empirical
results

Defects cluster when systems are in quasi-
equilibrium (i.e. relatively immature) but not
apparently when in equilibrium, (highly
significant) (Hatton and Hopkins 2008).

NAG Fortran NAG C

Copyright Les Hatton, 2008- Slide 43

Some more useful empirical
results

Note that this clustering is extreme with 78% (2865/3659)
of the NAG Fortran components exhibiting no defects
Even in the C library, 66% (1506/2267) of the components
have exhibited no defects

Nothing in either analysis has so far been able to find any
reason for this, so the current best guess is that its purely
statistical, like asking why a particular person has won the
lottery, (the answer being of course that everybody else
didn’t).

Copyright Les Hatton, 2008- Slide 44

Some more useful empirical
results

The following are all statistically significant
Checklists do not appear to improve inspection
capability, (highly significant), (Hatton (2008)).
The Pascal construct for i:= m to n is far more
reliable than the C/C++ equivalent for (i=1;
i<=m,…) (van der Meulen (2008))
Run-time checks are just as effective on reliable
code as unreliable code so don’t remove them,
(van der Meulen (2008)).

Copyright Les Hatton, 2008- Slide 45

Conclusions

Empirical results strongly suggest implementation
independent behaviour is present in software systems
Component sizes in software systems of very different size
and language obey power-law distributions a priori
Arguments based on statistical mechanics predict defect
distribution behaviour which is observed
Executable lines of code is as good as any other metric
Individual metrics long-believed to be correlated to defect
are weak at best and some appear even weakly anti-
correlated.

Copyright Les Hatton, 2008- Slide 46

Conclusions

Most importantly, we are beginning to get a feeling
for how defective systems behave without being
too cluttered with implementation details.

I for one, find this very exciting.

Copyright Les Hatton, 2008- Slide 47

References

My writing site:-
http://www.leshatton.org/

http://www.leshatton.org/

	Title Slide
	Overview
	Overview
	Fashion …languages, bloody languages
	Fashion …incomprehensible tomes
	Fashion …paradigms, bloody paradigms
	Fashion …inadequate statistical reasoning
	And the result …
	and …
	And a day in the life of a mail server (26-Aug-2008) …
	Some experimental progress
	Overview
	Some examples of ‘metrics’
	MetricsWhere do we start ?
	MetricsWhere do we start ?
	MetricsWhere do we start ?
	Lesson 1:Cyclomatic complexity effectively useless
	Lesson 2:No metric strongly correlated
	Lesson 3:PCA – a very confused picture
	Lesson 4:Some metrics weakly anti-correlated
	However, Lesson 5:
	Overview
	What is scale-free behaviour ?
	What is scale-free behaviour ?
	What is scale-free behaviour ?
	What is scale-free behaviour ?
	What is scale-free behaviour ?
	More examples
	General mathematical treatment
	General mathematical treatment
	General mathematical treatment
	General mathematical treatment
	Application to software systems
	General mathematical treatment
	Application to software systems
	Application to software systems
	General mathematical treatment
	Application to software systems
	Application to software systems
	Application to software systems
	Overview
	Some more useful empirical results
	Some more useful empirical results
	Some more useful empirical results
	Conclusions
	Conclusions
	References

