
Title: Some notes on software failure

Date: 24/Oct/2001

Author: Les Hatton

The problem

Software failure manifests itself in at least three important ways:-

�Process failure. Here the process of producing software fails in some
fundamental way so that the wrong system is produced, or the right system is
produced but very late, or even no system is produced at all. This has been a
very common source of failure in all types of development. An example is
the Taurus Stock Exchange system in the UK as well as a significant number
of Government sponsored initiatives. The NHS has been rather blighted here.
We are not alone. In the US, a study of $140 million worth of Flight Controls
Software Projects 1985-1990 by the Audit Office of the US D.o.D. revealed
that 90% was either never delivered or never worked.

�Product failure (cessation). Here the product fails when it is running leading
to some adverse behaviour. There are numerous examples of this with a
significant number of billion dollar failures occurring around the world in the
1990s, the first probably being the AT&T failure of January 1990 when a
single mistake took down the entire US long-distance telephone network for 9
hours. In the last two years, most major car companies have had very
expensive recalls because of mistakes in software controlled systems leading
to unacceptable failures.

�Product failure (misleading results). Here the results of scientific research
are erroneous because they are computer simulated by defective software. As
an example of this, the main mathematical technique used for oil & gas
exploration is fundamentally damaged by software failure, (Hatton & Roberts
(1994), Hatton (1997)), with an unexpected drop to one significant figure of
accuracy instead of the expected four and the necessary three. The evidence
suggests that many other numerical simulations in science may be similarly
affected.

In aggregate, the cost of failure is now such as to be unquestionably damaging
to the UK economy (as well as all other major economies) and a resolve to
improve matters would be central to the global performance of the UK economy
in IT and any dependent activity. It is a genuinely strategic issue.

Aggravating factors

�Size. Software systems are growing by a factor of two every 18 months in
consumer embedded systems. Today we have around 3,000,000 source lines
in a car.

© Copyright, Les Hatton, UKC, 2001, 24-Oct-2001 Page .. 1

�Coupling. Networking such systems leads to new and poorly understood
failure modes through component interaction.

�Chaotic behaviour. Software systems tend to fail chaotically. A small
change in a program can lead to a small or large effect in the run-time
behaviour with little to guide us on which.

�Cost of failure. The 1990s saw the first of the billion dollar failures and a
number of repetitions.

�Reduced time to market. The pressure of modern development usually leads
to software being released too early.

Some ancillary comments

�Perfection is not an option. If a software product has less than one fault
which fails per 1000 lines of source code in its entire life-cycle, it is about as
good as has ever been systematically achieved. In addition, 5-10% of these
failures will be deemed significant. This means that in a million line
development (fairly typical today), even with a state of the art process, the
product will exhibit around 1000 defects in its life-cycle of which 50-100 will
be serious. A reasonable product could be expected to be about 5 times
worse.

�Extensive testing does not imbue a product with reliability. The discovery of
many defects found during testing is highly correlated with the fact that many
more will appear after release. Reliability must be designed in; it cannot be
tested in.

�A high percentage of faults take a very long time to appear. In a famous
experiment reported at IBM in 1984, (Adams (1984)), a third of all faults took
longer than 5000 execution years to fail. In addition, it was found that every
7 faults corrected led to the injection of one new one at least as severe due to
unintended side-effect. This experiment proves conclusively the futility of
dynamic testing as a method of improving reliability as intimated in the
previous point.

�The use of formal mathematically based notations help but seem to give only
a modest improvement (a factor of about three in defect density) which
although it attacks faults injected during design, the improvements can easily
be swamped by other classes of injected fault such as implementation faults,
(Pfleeger and Hatton (1997)). As a result, you cannot rely on such techniques
alone.

�Software is cursed with unconstrained creativity. Many new paradigms are
introduced which have no effect on reliability principally because they exist
in a measurement vacuum and are essentially fashion-based. For example,
the very popular and ubiquitous OO (Object-Oriented) methodology appears
to have some fundamental flaws leading to longer fault correction times not

© Copyright, Les Hatton, UKC, 2001, 24-Oct-2001 Page .. 2

shorter, (Hatton (1998)).

�The classic engineering paradigm of control process feedback, ("do not make
the same mistake twice"), is almost completely absent from software
engineering with repetitive failure modes common, (i.e. the same fault failing
repeatedly because it cannot be located from the evidence available). This is
a direction consequence of the almost complete absence of measurement and
analysis coupled with the poor understanding of prediction and diagnosis in
software engineering systems, (Hatton, (2001)).

�Software process research leading to initiatives such as the CMM is
incomplete. One of the most reliable software components in history is the
Linux kernel. Linux is developed in the complete absence of numerous
processes stated as significant in the CMM, (Capability Maturity Model of
the Software Engineering Institute at Carnegie-Mellon, now a US D.o.D.
Standard). The CMM in spite of its immense popularity particularly in the
US, appears neither necessary nor sufficient.

�A significant percentage of software failures, perhaps as high as 40% could
have been avoided using techniques we already know how to do. For shame
we can do better than this.

�In software engineering, technology problems do not appear to be the most
significant, this role appears to be played by educational problems. There are
a significant number of experiments around the world which show that
variations in individual engineers generally dwarf variations in technologies,
(Prechelt, Tichy, (1995-)).

Summary

Software engineering is unquestionably a huge benefit to society. There remain
very significant problems however and the current cost of failure is simply
enormous. In an age where jobs are threatened by outsourcing software
development to locations like the software factories of India, higher reliability
software and the consequent dramatically reduced costs can make or break an
economy. The difference in price between developing in India and developing
in Britain is less than the cost difference between software reliability as it stands
today and how good we could make it with a relatively modest but concerted
effort.

References

Adams, N.E. (1984) "Optimising preventive service of software products", IBM
Journal of Research and Development, 28(1), p. 2-14.

Hatton, L. and Roberts A. (1994) "How accurate is scientific software ?", IEEE
Transactions on Software Engineering, 20(10), p. 785-797.

© Copyright, Les Hatton, UKC, 2001, 24-Oct-2001 Page .. 3

Hatton, L. (1995) "Safer C: developing software in high-integrity and safety-
critical systems", McGraw-Hill, ISBN 0-07-707640-0; Chapter 1.

Hatton, L. (1997) "The T experiments: errors in scientific software", IEEE
Computational Science and Engineering, 4(2), p. 27-38.

Hatton, L. (1998) "Does OO sync with the way we think ?", IEEE Software,
15(3), p. 46-54.

Hatton, L. (2001) "Exploring the role of diagnosis in software failure", IEEE
Software, July.

Pfleeger, S.L. and Hatton L. (1997) "Investigating the influence of formal
methods", IEEE Computer, 30(2), p 33-43.

Prechelt, L., Tichy W. (1995-) http://wwwipd.ira.uka.de/~prechelt and ~tichy.

© Copyright, Les Hatton, UKC, 2001, 24-Oct-2001 Page .. 4

