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Abstract

Of the many revolutions which have captured the hearts of programmers, Object-

Orientation (OO) has been arguably the most forceful and alluring.  Its central

premise appears to be that ‘it matches the way we think about the world’, and

therefore self-evidently points the way forward for all future development.

This polemic paper develops the argument that reliability in the form of corrective

maintenance cost is the most important improvement goal and goes on to expose the

OO model to recent corrective maintenance data both for big systems in general and

for OO systems in particular, in this case all implemented in C++.  These data

suggest that no particular advantage accrues from the use of such techniques, and

that there is strong evidence to suggest that defects are harder rather than easier to

correct, although it was not possible to apportion blame between the OO paradigm

itself and its C++ implementation.  Finally, the paper considers whether the basic

premise of OO is well-supported by considering widely-accepted models of how

we think in the context of programming systems, and how well the OO model

matches these models.

The paper concludes that OO may have got some of this right but that any paradigm

which tends to lead to a system being decomposed into large numbers of small

components as is frequently the case in OO systems as well as conventional

systems, is fundamentally wrong, and that we should therefore expect no particular

benefits to accrue from an OO system than from a non OO system.  In the case

studies discussed here, it appears that at best OO is simply a different paradigm but

is emphatically not better, and it is argued that significant improvement will only

follow from paradigms which specifically acknowledge the strengths and

weaknesses of the human reasoning system.  By far the biggest concern is that

corrective maintenance costs, which already dominate the software life-cycle, look

set to increase significantly, without any easily quantifiable benefit accruing.

Engineering and the Quantum leap

In the history of engineering, there are two ways to make progress.  Progress can

be either slow, incremental and deriving from measurement-based improvement, or

it can be the result of a quantum leap, the so-called ‘silver bullet’.  In other branches

of engineering, a mixture of the two is usually found, with occasional quantum

leaps interspersed with long periods of consolidation carefully based on

measurement.  Examples of quantum leaps in civil engineering include the arch
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keystone and the invention by the Romans of cement.  Software engineering ought

to be the same, but regrettably, far more is expected from the quantum leap because

there so little emphasis on measurement-based incremental improvement.  The

many failures of the search for the ‘silver bullet’, (c.f. (Brooks 1986), (Harel 1992)

does not mean to say that there are none, but conventional engineering should teach

us that they are few and far between and without measurement, we may not be in a

position to exploit them as we would not recognise them for what they were.

OO represents one of the latest, perhaps the most significant and certainly the most

expensive attempt to find a silver bullet, and now dominates recent software

engineering research and teaching to such an extent that if it is found to be wrong,

even partially, a huge amount of money would yet again have been thrown away on

a whim, or even worse, we would not be able to throw it away at all.

Before we can establish its true nature, we should ask the question as to what

precisely does a silver bullet mean in terms of software engineering ?  Over the last

few years, some organisations and groups have assiduously amassed data on

software systems to the extent that such data contains powerful messages which we

should no longer ignore.  The central questions that we currently ask about

software concern:

• Reliability.  It is well accepted from numerous sources that around 80 ±
10% of all the money we spend on software is spent on maintenance after

the software is first released to its intended users.  The phase prior to its

release we call development.  Furthermore, major studies such as conducted

by (Arnold 1983) strongly suggest that corrective maintenance is the most

expensive component amounting to some 50% of all maintenance.  The

other 50% is ascribed to the other two recognisable components of adaptive

maintenance, (improvements based on changed behaviour) and perfective

maintenance (improvements based on unchanged behaviour).  In other

words, we have the unpleasant truth that for every hour we spend

developing a system, we spend 2 hours correcting it in its life-cycle, and

that corrective maintenance appears to be the most significant component of

the life-cycle at around 40%, as indicated in Figure 1.   Clearly, any silver

bullet would have to have a huge beneficial effect on the corrective

maintenance cost.

• Productivity.  Programmers cost a lot of money, so any silver bullet should

increase productivity, but what does this mean ?  Productivity, or the rate at
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which a task is completed, depends directly on the ability to carry out the

essential tasks of development or the three components of maintenance.  It

does not really make sense to ask about productivity, which is merely a

derived activity.  For example, the very rapid production of inferior code

could not conceivably be called productivity because of the nature of Figure

1.

• Ease of modification.  This is simply a measure of how efficiently

maintenance of the various kinds described above can be carried out.

• Re-use.  This involves the notion of re-using parts of a design or code in a

system for which they were not originally built.  It leads to many interesting

questions and is primarily aimed at the development phase.  Re-use has

been a feature of software development since the quantum leap of separate

compilation, a notion understood as early as Turing in the ‘40s and ‘50s,

allowing the emergence of libraries of sub-components for specific tasks

such as numerical algorithms in Fortran.  Judging by detailed surveys such

as that done by the ACM in (Crawford 1995), apart from GUI building, re-

use is not an outstanding success with C++ in spite of this being the second

most common reason for switching to the language.  (In our experience, by

far the most common reason is regrettably that the developer can put the

experience on his or her CV (Resume), a rather unsatisfactory reason.).  In

contrast, we can certainly recall achieving very high levels (> 90%) of re-

use using scientific library routines called from Fortran 20 years ago.

Development
Phase

Maintenance
Phase

20% 80%

Corrective Part
(50% of maintenance)

Life-
Cycle

Figure 1:  A simple picture indicating the relative costs of components of the life cycle.
From these figures, there is no doubt that corrective maintenance is of strategic
importance.
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Since a silver bullet by definition should lead to a significant improvement, the

primary manifestations should be on a massive reduction in maintenance, by far the

biggest component of the life-cycle, and in turn its biggest component, that of

corrective maintenance, rather than an unnatural obsession with the relatively minor

development phase.

A case study in OO

In this section, we will present a recent case history of an OO development in which

corrective maintenance cost was tracked in detail as well as other maintenance

issues, and will then compare it with other recently published data.

The case study was carried out during 1995 on the development of static deep-flow

analysis toolsets.  These operate by reading the source code of C, C++ or Fortran

like a compiler, but instead of going on to convert this to machine-executable code,

they compare it against knowledge bases of potential problems to identify

significant inconsistencies or dangerous use of the language which is likely to lead

to run-time failure.  The tools are very widely used and corrective maintenance cost

is an important consideration.

In this company, all software development has been orchestrated by a strict,

Change, Configuration and Quality Control System since April 25th 1991 yielding

a complete audit trail including defect analysis.  The system is completely automated

using an in-house developed product whose design goal was to automate significant

parts of levels 2 and 3 of the Carnegie Mellon Capability Maturity Model, as well as

providing data for some parts of levels 4 and 5.  Development is carried out in a

UNIX environment on Sun and HP workstations using various C and C++

compilers.

During the last 6 years, amongst other products, the company developed a deep-

flow analysis tool for C and written in C, and then a similar tool for C++ written in

C++. The C++ tool is based on close adherence to the emerging ISO C++ standard.

The parsers for these two languages were of a similar size in line-counts, which at

the time of the project measured as non-blank non-comment source lines came to:

• C parser: 44,700 lines of C.

• C++ parser: 52,500 lines of C++.

although the latter has grown very significantly since the study to incorporate the

full language and is now much bigger than the C parser.  Probably the single most
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important feature of this case study for the purposes of this discussion, is that both

products were written by the same highly-skilled staff, and yet both are radically

different.  The C++ parser is a true ab initio OO designed parser whereas the C

parser is a traditional design originally built some years earlier using a 1 token-

lookahead yacc grammar along with support routines.  Note that the code generated

by yacc only amounts to a small fraction of the whole parser.  The C++ parser by

further contrast is a recursive descent parser owing to the intractability of parsing

C++ using 1 token-lookahead grammars.  In other words, they are very different

products, albeit by the same authors, who would be considered expert in the

implementation languages, (with several years experience in each) and also in OO

design.

Another important factor in common is that safe well-defined subsets of C and C++

were used following guidelines published in (Hatton 1995) for example, although

the subset for C was rather stricter than that for C++ during the course of the

development.  These subsets were enforced automatically using the toolsets

themselves, and together constitute the effective programming standards.  New

code was required to conform absolutely and existing code was required to improve

incrementally until it met the absolute standard.  This also was enforced

automatically.

The study involved the analysis of the company’s entire change, configuration and

quality control history between 25th April, 1991, when it was formally instigated,

and 1st. August, 1995, when the study terminated.  For software experimentalists,

this system is automated and has the following desirable properties:

• Every request for any kind of change, corrective, adaptive or perceptive received

internally or externally, is entered into the system as a Change Request, (CR),

where it is assigned a unique number which is available for reference to the

originator.  This number can be used to track the progress of the CR at any time.

The first operational CR formally entered was CR 53 and at the time of

completion of the study, the most recent was CR 2935.  Software release notes

specifically reference the CR's resolved in that release.

• Corrective change accounts for only 12% of all CR's, (349 out of 2833).  The

industry average is thought to be near 50% as was described in the overview,

(Arnold 1983).  This low value is most likely due to a mixture of the enforced use

of safer language subsets, comprehensive regression test suites and objective test

coverage targets.

• CR's automatically go through a number of states as follows:
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EVALUATION

-> IMPLEMENTATION

-> TESTING

-> LOADING

-> DISSEMINATION

-> CLOSED

• CR's can be either accepted or rejected at the EVALUATION stage.  If accepted,

they are specified at this point before being advanced to IMPLEMENTATION.  If

rejected, they automatically mature to the CLOSED state.  A CR belongs to exactly

one person at any one time, although this person may change as the CR matures

through the above states.  CR's can only be assigned by a project co-ordinator.

The defect rates of the various products as of August 1995 are shown in Table 1.

Product Language Faults / KLOC

C parser C 2.4

C++ parser C++ 2.9

Table 1.  Defect rates of various products in the case study described here.

Note that all defects are logged however minor and are included in the above

statistics.

It may be noted that the industry standard for good commercial software is around 6

per KLOC in an overall range of around 6-30 per KLOC, e.g. (Musa, Iannino. et

al. 1987).  In addition, very few systems have ever got below 1 per KLOC this far

into the life-cycle, even in safety-critical systems.  Given that the above products

are in extensive use at several hundred sites around the world and that parsing

technology is considered to be a difficult application area, these statistics certainly

compare very well with the population at large.  Note finally that the average age of

the above products since first release is between 3 and 4 years so the fault densities

represent mature software.

The overall impression of this development environment then is that it is well-

controlled, formalised and produces rather lower defect densities than average

products.

Results

The Change Requests were used in two ways:
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• To compare defect densities in the C parser and the C++ parser.

• To compare the distributions of times to correct defects in the two products.

Comparison of defect densities

The defect densities are very similar although the defect density of the OO C++

development is already a little higher and is climbing rather more rapidly than the

conventional C development.  It is currently around 25% higher.

Comparison of distribution of correction times

This was most revealing and simultaneously the most disturbing.  One of the

arguments in favour of OO systems is that they are easier to change for corrective

reasons or otherwise.  To measure this, the distribution of times to fix defects was

compared between the OO C++ development and the conventional C development.

Times were computed automatically from the data from the beginning of the

IMPLEMENTATION phase to the beginning of the LOADING phase.  It was

observed that failures were much harder to trace to faults in the OO C++ design

than in the conventional C design.  Although this may simply be a feature of C++,

it appears to be more generally observed in the testing of OO systems, largely due

to the distorted and frequently non-local relationship between cause and effect.  In

other words, the manifestation of a failure may be ‘a long way away’ from the fault

which led to it.  To quantify this, Figure 2 shows the percentage of all fixes

completed within certain times for both the C and C++ development.
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Figure 2:  A comparison of the distributions of the times to fix faults in comparable C++
and C development.  To read the graph, note that for the C development, 60% of all
fixes took less than 2 hours compared with only 30% of all fixes in the C++
development.  The C++ development is substantially right-shifted, indicating that all
corrections, simple and complex take significantly longer.

Overall, each C++ correction took more than twice as long to fix as each C

correction.  Now this could simply be because the C++ application area was more

difficult.  However, the figure shows clearly that the C++ curve is substantially

right shifted compared with the C curve which shows that even simple fixes take

longer on average.  In other words, it is less likely to be the application area than its

implementation.  For a different perspective on the data, Figure 3 shows the total

number of hours spent in each of the categories for each of the two products.
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Figure 3:  The total number of hours spent in corrective maintenance for each time
range for each product.  For example for defects taking between 20 and 50 hours to
correct, about 270 hours was spent on the C++ product and about 140 on the C
product.

In all 1,341 hours were spent correcting 94 defects in the product written in C++

compared with 375.1 hours correcting 74 defects in the product written in C.  The

overall picture is shown in table 1 including a calculation of the average time taken

to fix a defect for all defects, and also for defects taking no more than 40 hours.

This was done to remove the effects of a small number of very difficult defects

which tend to occur in the C++ implemented product but were never seen in the C

implemented product.  Even when this is done, defects still took around 37%

longer to fix in C++ than in C.  For all defects, the average correction time is 260%

longer in C++.

Implementation
language

Total hours Total defects Hours / defect

C, all defects 375.1 74 5.5

C++, all defects 1,341.0 94 14.3

C, all defects taking
no more than 40
hours

311.1 73 4.6

C++, all defects
taking no more than
40 hours

575.0 86 6.3

Table 1:  Comparison of defect correction times in the C and C++ implemented
products.
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The right shifting of C++ corrective maintenance costs compared with other

languages can also be seen in data comparing C++ with Pascal shown by

(Humphrey 1995) who independently analysed more than 70 Pascal and C++

programs and found the behaviour shown in Figure 4, which is quantitatively very

similar to the case history studied here.

Relative time to fix defects in C++
v. Pascal (Humphrey)

R
e

la
tiv

e
 

tim
e

 
to

 
fix

0

1 0

2 0

3 0

4 0

5 0

6 0

Code
review

Unit
testing

After
uni t

testing

Pascal

C++

Figure 4:  A comparison of the distributions of the times to fix faults in C++ and Pascal
development reported by (Humphrey 1995) who independently analysed a
considerable number of Pascal and C++ programs.  The C++ development is again
substantially right-shifted, indicating that all corrections, simple and complex take
significantly longer.

Finally, the effect has also been noted by (Tichy 1996) comparing C++ and C.

To summarise, we have described two independent sources of data, one of which is

presented in detail, which suggest that corrective maintenance costs are significantly

larger in C++ implemented OO systems than in conventional systems implemented

in C or in Pascal.  Clearly two independent cases do not make a theory and we do

not claim otherwise, however the similarity of the results is interesting and given

that the whole of OO appears to have existed so far in a measurement vacuum, there

are some disturbing questions which can only be answered by further

measurement.  If this pattern were to be repeated, then the claims of OO particularly

with regard to ease of corrective change look very dubious indeed.
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OO and the way we think

The nature of the data presented in the previous section is clearly of concern and so

in this section, we will speculate on the validity of the fundamental principle of OO

that it is a more natural way to think about systems.

Studying the copious literature of OO, the central features which define an OO

system seem a little ill-defined.  There seems to be an absence of agreement about

detail, however they appear to encompass at least the following:

• Encapsulation.  This concept simply means the ability to isolate the essential

properties of an object from the outside world.  In other words, only those

properties which the outside world needs to know are made visible.

• Inheritance.  This refers to the ability of an object to inherit properties from

another object.  Thus in OO, we think of a base object from which sub-

objects can inherit certain features, as well as adding their own.  This can be

extended to multiple inheritance whereby a sub-object can inherit properties

from more than one base object.

• Polymorphism.  This is the notion whereby the behaviour of an object is

context-sensitive.  In other words, it can behave differently in different

circumstances.

These properties are said by practitioners to mimic the way we think about the

world, i.e. in terms of objects and their properties.  We must however, clearly

distinguish between the logical properties of a paradigm and the degree of error-

proneness in the way we think about those properties.

So how do we reason logically ?  Well, in common with engineering, there is

considerable empirical evidence from physiology to guide us in building basic

models of the thinking process.  In particular, the nature of logical thought,

memory and symbolic manipulation are of relevance to the activity of programming.

There is very considerable physiological evidence, for example from studies of

Alzheimer’s disease, in favour of the existence of a dual level reasoning system in

humans based around a short-term memory and a long-term memory with

significantly different recovery procedures, (Craik and Lockhart 1990).  Short-term

memory is characterised by rehearsal, finite size and rapid erasure.  The effective

size is however governed by the degree of rehearsal.  As concepts are continually

rehearsed, their representation appears to become more compact preparatory to or
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perhaps coincident with the transfer to long-term memory, so more can fit into the

short-term memory.  Long-term memory is characterised by a storage mechanism

based on chemical recovery codes, effectively limitless capacity and longevity,

where recall is impaired only by breakdown in the recovery codes themselves rather

than the embedded memory itself.  Under certain conditions based on the short-term

rehearsal behaviour, memories are transferred from short-term to long-term

memory by a mechanism whereby important properties are encoded in a more easily

representable and diverse form, leading to the observed phenomenon whereby an

entire summer vacation can be recalled from the stimulus of a particular fragrance

for example.  This diverse mechanism is at the heart of accelerated learning

techniques which exploit such diversity to improve the accuracy and persistence of

recollections, and may have significant relevance to programming.  The relationship

is exemplified by Figure 5.

FORGOTTEN !

Short-term
Memory

Long-
term

Memory

Rehearsal
Buffer

Incoming
Information

Successfully
coded

Not
coded

Figure 5:  A simple schematic of the physiological properties of the human memory
system.

A simple mathematical model of this system (Hatton 1997), suggests that any

manipulation which can entirely fit into the short-term memory will be far more

efficient and free of error than those which require access to the long-term memory.

Furthermore, it appears to pay to keep the short-term memory as full as possible by

partitioning the problem into pieces which just ‘fill’ short-term memory without

overflowing into long-term memory.  This it turns out, leads directly to a U-shaped

defect density v. component size curve as shown in Figure 6, a phenomenon

widely observed in extraordinarily diverse software systems, (Card and Glass
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1987) , (Hatton 1997).  The latter paper also reinforces the observation previously

made by others, that defect density does not appear to be strongly dependent on

language, with mainstream languages like Ada, C, C++, Fortran, Pascal and

assembler all yielding broadly similar defect densities measured in defects per

KLOC, (1000 lines of code), which also supports the notion that defect

introduction is strongly related to models of human reasoning, rather than more

abstract concepts.

The U curve simply tells us that in any system, defects will tend to accumulate in

the smallest and largest components, leaving the medium-sized components as the

most reliable.  Note that the existing data does not tell us how to design a system,

since the systems were all measured after the fact.  No experiments have yet been

done whereby a system has been deliberately constructed to exploit the U-curve.

The existing data does however tell us how to inspect a system after the fact in the

knowledge that these are the conditions under which the U-curve was observed.

Models of this behaviour such as the one based on human memory described here

can of course make predictions but these predictions will have to wait for further

experiments to be confirmed or rejected.

Defects per
KLOC

Average component complexity

Figure 6:  The U-shaped defect density v. average component complexity observed
in many software systems.  Note that number of lines of source code is the most
commonly used complexity measure in these experiments.

Given these comments, how do the principles of OO fit into this model ?  First of

all, there appears to be a natural fit with encapsulation.  Encapsulation implies the

ability to think about an object somewhat in isolation and can be related to the

notion of manipulating something in short-term memory exclusively.  Furthermore,

the finite size of the short-term memory suggests that this requires that objects
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should also be of limited size.  However encapsulation does not explicitly recognise

the need to use the short-term memory most efficiently by keeping it nearly ‘full’,

which would correspond to the development of components in the medium-sized

range.  It is interesting to note in discussions with programmers about when they

should use formal methods that there is surprising agreement when a problem is

sufficiently complex to require some form of formal notational support, and we can

speculate that this is evidence of the notion that the short-term memory is ‘over-

flowing’.

It is a little less easy to see how inheritance fits, although the following argument

can be used.  If an object has already been transferred to long-term memory, the

mechanism of the transfer will have encoded important properties of the object in a

more ‘compact’ representation.  If an object is then being manipulated in short-term

memory and it possesses inherited properties previously encoded in a more efficient

form in long-term memory, their recall from long-term memory will be more

efficient.  However, access to long-term memory, breaks the ‘train of thought’ as

discussed above and is inherently more inaccurate.  So this property of OO seems

likely to be problematic.  This is supported by the results of (Cartwright and

Shepperd 1997), who in a detailed study of a large commercial C++ system

comprising some 133,000 lines, found that components involved in inheritance

contained 6 times more defects than components not involved in inheritance.

The third property, that of polymorphism, is potentially even more damaging.

Objects with chameleon-like properties, i.e. polymorphic objects, are intrinsically

more difficult to manipulate as they will by necessity involve pattern-matching

similar behaviour in the long-term memory.  This is related to apparently non-local

behaviour in an OO language, for example, the complex set of matching rules

which take place invisibly with function overloading in C++ through the

mechanism of implicit actions, which has been observed to cause programmers

difficulty in program comprehension and reading.

To conclude, it would seem that encapsulation does at least partially fit with the way

we think, but that neither inheritance nor polymorphism fit so naturally.  In other

words, even though the world may well be described conveniently in terms of

objects and their properties, OO is not naturally and self-evidently associated with

the least error-prone way of reasoning about the world, and should not necessarily

be considered a primary candidate for a quantum leap.  We can go on to conclude

from this simple model that any paradigm which favours the natural behaviour of

the relationship between short-term and long-term memory, for example by
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exploiting the U-curve in inspections, is likely to lead to significant improvement in

the sense of reduced defects although this will have to be tested experimentally.

Note that the paper by (Hatton 1997) made predictions which could be tested

experimentally.

Conclusions

The following conclusions can be made:

• owing to its measurement-confirmed role as the leading consumer of

programmer resource, reliability in the form of corrective maintenance cost

is a strategically important goal and a significant indicator of engineering

improvement,

• in the study cited here, an OO C++ implementation led to a system of

somewhat poorer defect density to an equivalent non OO system in C, and

more significantly, comparable defects took between two and three times as

long as long to correct as the whole distribution was right-shifted.  Both

systems were the work of the same experienced staff with expert language

skills in both languages. Very similar results were reported in studies

comparing Pascal against C++.

• the way defects appear in programming language usage are qualitatively

very similar to known properties of the human short-term / long-term

memory, and the generally accepted principles of OO do not appear to match

this human memory model particularly well,

Given the above, real corrective maintenance gains in terms of the overall number

of faults would only be gained from the higher defect density of the OO C++

implementation if a similar development in C would have taken much more code, in

other words, if C++ could lead to a corresponding compaction in code size for a

given functionality.  There was however no evidence for this, partly due to the large

amount of framework code which has to be written in C++ to set up the object

relationships.  As a coda, it is interesting to reflect in the survey by (Leach 1995),

that very few users felt they had got beyond 20% re-usability.  In fact, in the study

described here, re-usability is tracked and both systems have comparable levels of

re-use at around 40%.  We have heard of C++ systems which claim to have reached

much higher compaction levels, however this evidence is anecdotal and they seem

few and far between.
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It can be inferred that the above experiment along with other independently derived

data casts considerable doubt on the belief that OO systems implemented in C++ are

a uniform quantum step forward.  This is not the only study which shares such

doubts.  The paper (Cartwright and Shepperd 1995) raises a number of important

concerns on OO in general.  They cite these as:

• There are many claims concerning the ease of maintenance of OO software,

but such data as there is, is conflicting.

• The potential for complexity in OO systems gives rise to concern over their

maintainability in practice.

• Current maintenance research is not directly applicable to the OO paradigm

without adaptation.  In fact OO is so poorly defined in general, that there are

many conflicting views and many different hybrid approaches.

In other words, since improved maintainability is at question and since some 50%

of all maintenance is corrective as discussed in the overview to the current paper,

then improved corrective maintenance costs are also questioned by their study.

Finally, it also quotes that the majority of evidence on OO systems suggests that

they do not achieve their promise and finishes up with another survey of actual OO

users who perhaps surprisingly, still view it in a favourable light.  Hope does

indeed shine eternal in the human breast.

We can conclude by saying that this case history revealed that in comparable parallel

developments, no significant benefits accrued from the use of an object-oriented

technique in terms of corrective maintenance cost, and the resulting C++ product is

viewed within the company as much more difficult to correct and enhance.

Furthermore, the data is not unusual and compares well with other published data.

Although it is easy to criticise developers for not understanding the OO paradigm

properly in view of its rather vague definition, such criticism tends to arise from

people who do not measure their own efforts, and we look forward to seeing much

more data published on this vexed issue.  Finally, it is often noted anecdotally that

C++ class systems can take a little time to get ‘right’.   With this in mind, the

developers were given very considerable leeway to re-write parts of the C++

development as it evolved.  This freedom they made use of so that the experiment

described here was not simply an inappropriate first design.  Of course any design

OO or otherwise can be made better by successive refinement.

Finally, it must be recognised that this case history is unable to distinguish the

degree to which the reported problems are specifically related to OO itself or to the
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implementation language used in the case studies described, which was C++ in

each case.   Comparable data on other widely used OO languages such as Smalltalk

compared against conventional systems  seems rare to the point of non-existence

and we are aware of a certain amount of gentlemanly dispute in this area, even

though OO is no longer a ‘new’ idea.  However, taken with the significant study

showing that inheritance appears to attract defects, the similarity of the data

comparing C++ systems against two widely-differing languages, C and Pascal, and

finally the reasoning models presented here, we would argue that the problem is at

least partially ascribable to OO itself and that significant progress will only be made

in the key area of corrective maintenance cost using paradigms which are human

memory-oriented rather than object-oriented, for example, by explicit exploitation

of the empirically established U-curve of defect density.  Whatever direction is

taken, any attempt to improve in the absence of any feedback from measurement,

seems doomed to fail, however much fun it is.
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