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Abstract

An existing separable solution of the full unsteady axisymmetric Navier-
Stokes equations is presented in a form which can be repeated using open
source or widely available numerical libraries. A new separable solution
of the same equations is also presented and investigated numerically using
shooting methods.

$Date: 2003/10/01 14:06:04 $

1 Overview

Coordinate transformations are one of the most elegant concepts in physics.
The mathematical description of a problem in one coordinate system can be
extraordinarily complex and yet with a coordinate transformation, a very simple
equation can result. Of course, such equations can often by solved whereas the
initial equation can not. Examples abound. On a very simple level, consider
the difference between the representation of a circle in Cartesian coordinates:-

x2 + y2 = a2 (1)

compared with its polar representation:-

r = a (2)

Moving up the scale of complexity, the Joukowski transformation [1] transforms
an aerofoil shape into a circle. The problem of calculating fluid flow around an
aerofoil is then reduced to the problem of calculating the flow around a circle
which is much simpler.
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2 Transforming the axisymmetric Navier-Stokes
equations

The axisymmetric Navier-Stokes equations are a formidably complex set of equa-
tions which govern the movement of a fluid. They are used to model all kinds of
vortex flow such as occur in aerodynamics and meteorology. There are very few
exact solutions known and the solution space normally has to be explored by
numerical methods on the full set of equations, itself a very difficult problem.
For a velocity field:-

u = u(r, z, t); v = v(r, z, t); w = z$(r, z, t) (3)

where u is the radial velocity, v is the swirl velocity, w is the axial velocity
and r and t are the radius and time respectively, the full unsteady, viscous,
axisymmetric Navier-Stokes equations are:-
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The continuity equation, (fluid cannot disappear) is represented by:-
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As is the usual practice, the axisymmetric nature of the equations allows us to
rewrite them in terms of two dependent variables, the stream function Ψ and
the circulation function K, defined by
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Eliminating the pressure p from the radial and axial equations above, gives the
following two equations:-

−1
r
D2(

∂Ψ
∂t

) +
∂( 1

r2 D2Ψ, Ψ))
∂(r, z)

− 1
r3

∂K2

∂z
= −ν

r
D4Ψ (9)

where
∂(f, g)
∂(x, y)

= (
∂f

∂x
)y(

∂g

∂y
)x − (

∂f

∂y
)x(

∂g

∂x
)y (10)

and
∂K

∂t
− 1

r

∂(K, gΨ)
∂(r, z)

= νD2K (11)

2



3 Transforming the axisymmetric Navier-Stokes
equations

The point of the earlier section on coordinate simplification now becomes appar-
ent. The formidably complex equations of the previous section can be reduced
to coupled ordinary differential equations using the following transformations,
[2], [3].
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z

2
√
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(12)
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4ν
√

νt
= f(η)F (ξ);

K
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= h(η)H(ξ) (13)

where Kc is a constant with the dimensions of circulation.

Two exactly separable solutions now present themselves.

3.1 Solution 1

We let f = −η and h = η. The full N-S equations of the previous section then
reduce after one integration to the set of coupled ordinary differential equations
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where Ω
4t is the angular velocity. The resulting velocity field in the fluid is given

by
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These equations are easy to solve using shooting methods and were solved by
[3] and the solutions prove useful in modelling the air flow in the centre of an
intense vortex such as a tornado in contact with a non-slipping surface. One
important prediction is the existence of an axial stagnation point aloft where
the axial flow reverses. This has been observed in a number of tornadoes. The
relevant boundary conditions are

F (0) = (
dF

dξ
)ξ=0 = H(0) = 0; F (ξ) −→ ξ − C, H(ξ) −→ 1, ξ −→∞ (17)

Using the notation F” = d2F
dξ2 , Figure 1 shows F”(0) and H’(0) for a range of

Ω2. The corresponding velocity fields are shown in Figure 2.

3.2 Solution 2

There is a second solution to the full equations. These are given by choosing F
= ξ and H = ξ in the original equations and lead to the following solution
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Figure 1: A plot of F”(0) and H’(0) against Ω2
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Figure 2: Combined plot of F’(x) (radial), H’(x) (tangential) and F(x) (axial)
velocity fields.
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Figure 3: A plot of f’(0) and f”’(0) against Ω2
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The resulting velocity field has the form
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r
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(20)

3.2.1 Boundary conditions for solution 2

At the axis, f(0) = h(0) = 0 for zero axial and radial flow. In addition, we require
that ∂w

∂r = 0 which gives f”(0) = 0. Away from the axis, we have various choices
most of which lead to trivial flows, but an example of a non-trivial although
very simple flow is one for which (u,w) are independent of ν as ν −→ ∞. The
boundary conditions used are f ′(η) −→ 1

η , f ′′′(η) −→ 0, h′(η) −→ 0. At the
time of writing, no more interesting flows had been found.

The resulting solutions are shown as Figure 3 and the corresponding flow
patter in Figure 4.
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A Appendix: driver and plotting programs

So that these results can be independently repeated, the driver programs are
shown here. These were run against Numerical Recipes C library v. 2.08, [4] on a
SuSE Linux 8.2 machine and the results plotted using gnuplot, (http://www.gnuplot.org).
The plotting program is also shown. This produces four enhanced postscript
files which appear in this paper as Figs 1-4.

A.0.2 Driver program for solution 1

/*
* Program in C to simulate the results of solution 1.
*
* Revision: $Revision: 1.1 $
* Date: $Date: 2003/10/01 14:06:04 $
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define EPS 1.0E-6
#define GNUPLOT_SEPARATOR printf("\n\n");
/*
* Pull in the Numerical Recipes libraries.
*/

#include "nrutil.h"
#include "nr.h"
/*
* Variables local to my equations.
*/

float omegasq;

#define MAXPLOT 10000
float ind1[MAXPLOT];
float dep1[MAXPLOT];
float dep2[MAXPLOT];
float dep3[MAXPLOT];
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int nplot; /* Index into plotted arrays */
/*
* Communication variables for shooting.
*/

int nvar = 5; /* Number of equations in equivalent */
/* first order system. */

float x1 = 0.0; /* Start of integration */
float x2 = 2.0; /* End of integration */
/*-----------------------------------------------------------------
* Transformation used in the user-supplied functions, derivs,
* load and score.
*
* Let y1 = F, y2 = F’, y3 = F’’, y4 = H, y5 = H’.
*-----------------------------------------------------------------*/

/*
* First of all transform the equations into a set of first order
* equations for the format required by the shooter.
*/

void
derivs(

float x,
float y[],
float dydx[]

)
{
/*
* The equations are, (p.56 of Ph.D):-
*
* F’’’ + 2xF’’ + 4F’ + 4FF’’ - 2(F’)**2 + 0.5 *(WH)**2 = 2 + 0.5W**2
* H’’ + 2xH’ + 4H = 4(F’H - FH’)
*/

dydx[1] = y[2];
dydx[2] = y[3];
dydx[3] = - 2.0 * x * y[3] - 4.0 * y[2] - 4.0 * y[1] * y[3]

+ 2.0 * y[2] * y[2] - 0.5 * omegasq * y[4] * y[4]
+ 2.0 + 0.5 * omegasq;

dydx[4] = y[5];
dydx[5] = -2.0 * x * y[5] - 4.0 * y[4] + 4.0 * y[2] * y[4]

- 4.0 * y[1] * y[5];
}
/*-----------------------------------------------------------------*/
/*
* Supply the boundary conditions at the start point, in this case
* x = 0.
*
* The start boundary conditions are, (p.55 of Ph.D):-
*
* F(0) = F’(0) = H(0) = 0
*/

void
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load(
float xs,
float v[],
float y[]

)
{
/*
* These are easy.
*/

y[1] = 0.0; /* F(0) = 0.0 */
y[2] = 0.0; /* F’(0) = 0.0 */
y[4] = 0.0; /* H(0) = 0.0 */

/*
* These are parameterised from the v vector.
*/

y[3] = v[1]; /* F’’(0) = ? */
y[5] = v[2]; /* H’(0) = ? */

}
/*-----------------------------------------------------------------*/
/*
* Test the parameterised start values against their values
* at the end point.
*
* The end boundary conditions are, (p.55 of Ph.D):-
*
* F -> x -C, H-> 1 as x -> inf
* so F’’(x) -> 0, H’(0) -> 0 as x -> inf
*/

void
score(

float xf,
float y[],
float f[]

)
{
/*
* f[1] corresponds to v[1] which is the behaviour of F’’.
* f[2] corresponds to v[2] which is the behaviour of H’.
*
* The f[] is a discrepancy vector. The shooting algorithm forces
* the elements of f[] towards zero so that the discrepancy is zero.
* Hence if we simply put in the function values here, the statement
* f[1] = y[3] will converge when y[3] is closest to zero which is the
* required behaviour for y[3] = F’’ as x -> inf.
*/

f[1] = y[3];
f[2] = y[5];

}
/*-----------------------------------------------------------------*/
void
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gnuplot_out(
char *string,
float x[],
float y[]

)
{

int i;

printf("%s\n", string);

for( i = 0; i < nplot; ++i )
{

printf("%g\t%g\n", x[i], y[i] );
}

}
/*-----------------------------------------------------------------*/
int
main(void)
{

const int n2 = 2;
float *v;
float *ystart;
int check = 0;
float dx = 0.1;
float h1;
float x;
float hmin = 0.0;
int nok, nbad;

/*
* Create the disposable vector.
*/

v = vector( 1, n2 );
/*
* Part 1: Find F’’(0) and H’(0) v. omegasq.
* ==========================================
* First guess the start values for v[1] = F’’ and v2 = H’.
*/

v[1] = 1.0;
v[2] = 2.0;

/*
* For loop on real variables, Yuk.
*/

nplot = 0;

for( omegasq = 0.0; omegasq < 35.0; omegasq += 1.0 )
{

newt( v, n2, &check, shoot );

if ( check )
{
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printf("# ... did NOT converge\n");
}
else
{

/*
* Store the values in the plot arrays.
*/

dep1[nplot] = v[1];
dep2[nplot] = v[2];
ind1[nplot++] = omegasq;

if ( nplot == MAXPLOT ) break;
}

}
/*
* Output the results in gnuplot format. These have to
* be done one after the other.
*/

gnuplot_out( "# Omega**2 F’’(0)", ind1, dep1 );

GNUPLOT_SEPARATOR;

gnuplot_out( "# Omega**2 H’(0)", ind1, dep2 );
/*
* Part 2: Integrate axial, radial and tangential velocity fields
* for 1 value of omega squared where there is an axial stagnation
* point aloft.
*/

omegasq = 20.0;
ystart = vector( 1, nvar );

nplot = 0;
/*
* Shoot to get the starting values.
*/

newt( v, n2, &check, shoot );

load( 0.0, v, ystart );

h1 = (x2-x1) * .01;
/*
* Now integrate out step by step.
*/

for( x = x1; x < x2; x += dx )
{

odeint( ystart, nvar, x, x+dx, EPS, h1, hmin,
&nok, &nbad, derivs, rkqs );

dep1[nplot] = ystart[1];
dep2[nplot] = ystart[2];
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dep3[nplot] = ystart[4];
ind1[nplot++] = x+dx;

if ( nplot == MAXPLOT ) break;
}

GNUPLOT_SEPARATOR;

gnuplot_out( "# x F(x)", ind1, dep1 );

GNUPLOT_SEPARATOR;

gnuplot_out( "# x F’(x)", ind1, dep2 );

GNUPLOT_SEPARATOR;

gnuplot_out( "# x H(x)", ind1, dep3 );

free_vector(ystart, 1, nvar );
free_vector(v, 1, n2 );

exit(EXIT_SUCCESS);
}

A.0.3 Driver program for solution 2

The only significant differences were in the setup functions which are shown
below.

/*
* Program in C to simulate the results of solution 2.
*
* Revision: $Revision: 1.1 $
* Date: $Date: 2003/10/01 14:06:04 $
*/

...
int nvar = 6; /* Number of equations in equivalent */

/* first order system. */

...
/*-----------------------------------------------------------------
* Transformation used in the user-supplied functions, derivs,
* load and score.
*
* Let y1 = F, y2 = F’, y3 = F’’, y4 = H, y5 = H’.
*-----------------------------------------------------------------*/

/*
* First of all transform the equations into a set of first order
* equations for the format required by the shooter.
*/
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void
derivs(

float x,
float y[],
float dydx[]

)
{
/*
* The equations are, (p.74 of Ph.D):-
*
* 2x**3f’’’’ + 2x**2(x+2)f’’’ + 2x**2(ff’’’-f’f’’) + 4x**2f’’= W**2/8h**2
* xh’’ + xh’ + 0.5h = hf’ -h’f
*/

dydx[1] = y[2];
dydx[2] = y[3];
dydx[3] = y[4];
dydx[4] = - ((x+2) * y[4])/x - (y[1]*y[4] - y[1]*y[3])/x - 2.0*y[3]/x

+ (omegasq * y[5] * y[5])/(16.0*pow(x,3.0));
dydx[5] = y[6];
dydx[6] = - y[6] - (y[1] * y[6])/x + ((y[2] - 0.5) * y[5])/x;

}
/*-----------------------------------------------------------------*/
/*
* Supply the boundary conditions at the start point, in this case
* x = 0.
*
* The start boundary conditions are, (p.74 of Ph.D):-
*
* f(0) = f’’(0) = h(0) = 0
* (f’’(0) corresponds to dw/dr = 0 on axis.)
*/

void
load(

float xs,
float v[],
float y[]

)
{
/*
* These are easy.
*/

y[1] = 0.0; /* f(0) = 0.0 */
y[3] = 0.0; /* f’’(0) = 0.0 */
y[5] = 0.0; /* h(0) = 0.0 */

/*
* These are parameterised from the v vector.
*/

y[2] = v[1]; /* f’(0) = ? */
y[4] = v[2]; /* f’’’(0) = ? */
y[6] = v[3]; /* h’(0) = ? */
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}
/*-----------------------------------------------------------------*/
/*
* Test the parameterised start values against their values
* at the end point.
*
* The end boundary conditions are, (p.55 of Ph.D):-
*
* F -> x -C, H-> 1 as x -> inf
* so F’’(x) -> 0, H’(0) -> 0 as x -> inf
*/

void
score(

float xf,
float y[],
float f[]

)
{
/*
* f[1] corresponds to v[1] which is the behaviour of f’.
* f[2] corresponds to v[2] which is the behaviour of f’’’.
* f[3] corresponds to v[3] which is the behaviour of h’.
*
* The f[] is a discrepancy vector. The shooting algorithm forces
* the elements of f[] towards zero so that the discrepancy is zero.
* Hence if we simply put in the function values here, the statement
* f[1] = y[3] will converge when y[3] is closest to zero which is the
* required behaviour for y[3] = F’’ as x -> inf.
*/

f[1] = y[2] - 1.0 / sqrt(xf);
f[2] = y[4];
f[3] = y[6];

}
...

A.0.4 Plotting program for both solutions

The gnuplot program was used to produce Figs 1-4. The program is shown
below.

#
# Gnuplot script to make all figures for this project.
#
# Revision: $Revision: 1.1 $
# Date: $Date: 2003/10/01 14:06:04 $
#-----------------------------------------------------------------------
#
# First create the combined diagram of F’’(0) and H’(0) for solution 1.
# ====================================================================
#
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# Divert the output into the eps file.
#
set term postscript eps enhanced color
set output "fig1.eps"
#
# Annotate. To get fancy symbols you have to use the enhanced mode
# in postscript.
#
# Note the set-show aspect of gnuplot. If you don’t show it you
# don’t see it.
#
set xlabel ’{/Symbol=20 W}^2’
show xlabel

set title "F’’(0) and H’(0) v. {/Symbol=20 W}^2"
show title
#
# Ask for a legend. The titles in the legend are set by the titles in
# the plot command which follows.
#
set key outside box
show key

plot ’sol1.dat’ index 0 smooth bezier title "F’’(0)" with linespoints, ’’ index 1 smooth bezier title "H’(0)" with linespoints

show tics

#
# Close the file.
#
set output
#
# Now create the combined flow diagram.
# ====================================
#
# Divert the output into the eps file.
#
set output "fig2.eps"

#
# Annotate. To get fancy symbols you have to use the enhanced mode
# in postscript.
#
# Note the set-show aspect of gnuplot. If you don’t show it you
# don’t see it.
#
set xlabel ’x’
show xlabel

set title "F(x), F’(x) and H’(x) v. x for {/Symbol=20 W}^2=20"
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show title
#
# Ask for a legend. The titles in the legend are set by the titles in
# the plot command which follows.
#
set key outside box
show key

plot ’sol1.dat’ index 2 smooth bezier title "F(x)" with linespoints, ’’ index 3
smooth bezier title "F’(x)" with linespoints, ’’ index 4 smooth bezier title "H(x)"
with linespoints

show tics

#
# Close the file.
#
set output
#
# First create the combined diagram of F’’(0) and H’(0) for solution 2.
# ====================================================================
#
# Divert the output into the eps file.
#
set term postscript eps enhanced color
set output "fig3.eps"
#
# Annotate. To get fancy symbols you have to use the enhanced mode
# in postscript.
#
# Note the set-show aspect of gnuplot. If you don’t show it you
# don’t see it.
#
set xlabel ’{/Symbol=20 W}^2’
show xlabel

set title "f’(0) and f’’’(0) v. {/Symbol=20 W}^2"
show title
#
# Ask for a legend. The titles in the legend are set by the titles in
# the plot command which follows.
#
set key outside box
show key

plot ’sol2.dat’ index 0 smooth bezier title "f’(0)" with linespoints, ’’ index 1
smooth bezier title "f’’’(0)" with linespoints

show tics
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#
# Close the file.
#
set output
#
# Now create the combined flow diagram.
# ====================================
#
# Divert the output into the eps file.
#
set output "fig4.eps"

#
# Annotate. To get fancy symbols you have to use the enhanced mode
# in postscript.
#
# Note the set-show aspect of gnuplot. If you don’t show it you
# don’t see it.
#
set xlabel ’x’
show xlabel

set title "f(x), f’(x) and h(x) v. x for {/Symbol=20 W}^2=20"
show title
#
# Ask for a legend. The titles in the legend are set by the titles in
# the plot command which follows.
#
set key outside box
show key

plot ’sol2.dat’ index 2 smooth bezier title "f(x)" with linespoints, ’’ index 3
smooth bezier title "f’(x)" with linespoints, ’’ index 4 smooth bezier title "h(x)"
with linespoints

show tics

#
# Close the file.
#
set output
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