

LL.M. thesis, Les Hatton, 1999 Page 1

Towards a consistent legal framework for
understanding software systems behaviour

a thesis in support of the degree of LL.M. by dissertation

at the University of Strathclyde Centre for Law, Computers and Technology.

June 30, 1999

Les Hatton, Ph.D., C.Eng., F.B.C.S.

LL.M. thesis, Les Hatton, 1999 Page 2

Declaration of author’s rights:

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.49. Due acknowledgement must always be made of the use

of any material contained in, or derived from, this thesis.

LL.M. thesis, Les Hatton, 1999 Page 3

Dedication

This thesis is dedicated to my long-suffering family, Gillian, Leo, Felix and

Isabelle who yet again have had to watch me tapping away at a machine for

hours on end. I hope it’s all worth it in the long run.

I would also like to thank Professor Ian Lloyd for supervising this work and

providing help, encouragement and above all understanding when I got

stuck.

LL.M. thesis, Les Hatton, 1999 Page 4

Table of Contents
CHAPTER 1: SOFTWARE ENGINEERING FROM A COMPUTER SCIENCE
PERSPECTIVE . 1 0

DIGITAL CONVERGENCE.. 11
Digital music.. 11
Digital Art.. 12
Digital speech... 14
Signal encryption... 14
... and software.. 14

THE NATURE OF SOFTWARE.. 16
The phases of software development.. 21
Software reliability... 25

THE PRODUCTION OF SOFTWARE.. 32
The requirements phase... 32
Design / Specification... 33
Implementation... 33
Unit testing.. 34
System and integration testing.. 34
Release.. 35

TYPES OF SOFTWARE... 36
COTS.. 36
Modified software... 37
Bespoke software... 38

THE GROWTH OF ENGINEERING PRINCIPLES... 39
PROBLEM AREAS IN SOFTWARE... 41

Software requirements capture... 41
Software reliability... 41
Inadequate process control.. 48
The deliverables... 51

COMMON MISCONCEPTIONS ABOUT SOFTWARE... 54

CHAPTER 2: THE NATURE OF LEGAL LIABILITY FOR SOFTWARE 5 7

IMPORTANT STATUTES COVERING SOFTWARE DELIVERY AND PRODUCTION.................................. 57
THE NATURE OF LIABILITY... 58

Liability in contract.. 59
Delictual Liability.. 85
Statutory Liability... 95
Summary... 99

CHAPTER 3: INFLUENTIAL CASES BEFORE THE COURTS .1 0 0

SAPHENA COMPUTING LTD. V. ALLIED COLLECTION AGENCIES LTD. (1985).............................101
The judgement..102
Discussion...102
Criticisms...103

ST ALBANS CITY AND DISTRICT COUNCIL V. INTERNATIONAL COMPUTERS LTD. (1996)..............106
The judgement..107
Discussion...110
Criticism...110

COMPLIANCE MATRIX ..110
DISCUSSION...113

Bespoke software development...113
Modified software..114
COTS (Commercial Off The Shelf)..114

LL.M. thesis, Les Hatton, 1999 Page 5

CHAPTER 4: BRIDGE BUILDING:- ISSUES WORTHY OF FURTHER
DISCUSSION. .1 1 7

SOFTWARE AS GOODS OR SERVICE ...117
ADDING DELICTUAL LIABILITY TO THE SPECTRUM..126
AT WHAT TIME IS SOFTWARE DEEMED TO BE OF SATISFACTORY QUALITY ?128

What is a reasonable time ?...130
ASSESSING BEST PRACTICE IN SOFTWARE ENGINEERING...134
IMPLICATIONS FOR SOFTWARE CONTRACTS...139

Contractual clauses for the customer’s benefit...141
Contractual clauses for the supplier’s benefit..145
Contractual clauses for both parties benefit..146

THE COPYRIGHT NATURE OF SOFTWARE...148
MAKING ESCROW AGREEMENTS WORK..150

Legal problems with escrow agreements..150
Technical problems with escrow agreements...151

THE YEAR 2000 PROBLEM...153
BENEFIT VERSUS INCONVENIENCE..159

CHAPTER 5: SUMMARY AND SUGGESTIONS FOR FURTHER WORK1 6 3

APPENDIX A: PROPOSED CHANGES TO THE US UCC, (UNIVERSAL
COMMERCIAL CODE), AND IMPLIED TERMS IN UK LAW.1 6 5

RESTRICTIONS ON USE..166
THE PACKAGED SOFTWARE MODEL...166
REDUCED RESPONSIBILITY TO CUSTOMERS...167

REFERENCES. .1 6 8

LL.M. thesis, Les Hatton, 1999 Page 6

Author's Preface

The relationship between software and the law is currently a rather uneasy

one. For example, the essentially intangible nature of software has led to

an understandable reluctance by the courts to attempt to categorise it as

either goods or as a service, and yet the explosive growth of software with

its frailties as well as benefits in consumer society suggests that this may

only be putting off the inevitable. This thesis was written from the point of

view of a computer scientist increasingly concerned by this situation in the

hope that it will help provide a reasonable bridge between the legal

perspective and the software engineering perspective. What indeed can

the reasonable man or woman expect of software ?

The strategy used is to describe software engineering from a

computer scientist’s point of view in order to explain just how and why

software engineering is of considerably lower quality than other more

mature engineering disciplines. This is followed by a detailed discussion of

various aspects of law as might occur in a legal text book but with

discussion of implications for software engineering inserted where relevant.

Following on from this, certain aspects of particular relevance are

developed in detail.

The thesis is constructed according to the following plan:-

Chapter 1:

In this chapter, software engineering will be described from the

perspective of the computer scientist. Software engineering is, by

the standards of traditional engineering such as civil and mechanical

engineering, a very imperfect discipline. In other words not only is

the state of the art depressed with respect to other more mature

engineering disciplines, but there is also a much greater natural

variation in offered products. It is very important for the legal

practitioner to understand these limitations and variations to preserve

LL.M. thesis, Les Hatton, 1999 Page 7

a reasonable viewpoint, otherwise software engineering may suffer

and the many benefits which accrue along with its problems would

be lost. It is in nobody’s interests for poor engineering to evade

liability but the current state of the art must always be in

contemplation. It simply isn’t very good yet and it will not be for some

considerable time.

Chapter 2:

This chapter presents a conventional current legal view of a number

of areas including the position of the consumer and liability in

software engineering such as can be read in a number of sources. It

is somewhat speculative because there is very little case law to act

as guidance yet, so it simply describes the issues and then adds

comments based on a computer science perspective, addressing

such issues as reasonableness and consistency. It should be

contrasted carefully with Chapter 1.

Chapter 3:

This chapter compares in some detail the judgements in two recent

influential cases, that of Saphena Computing v. Allied Collection

Agencies and St. Albans v. ICL. Since these represent arguably the

only significant civil case law presently available, these judgements

are worthy of a detailed investigation. This chapter compares their

consistency and their relevance to future litigation.

Chapter 4:

In this chapter, a number of interesting aspects will be pursued in

much greater detail, for example, the perennial Software as Goods or

Service argument will be studied. The underlying model for trying to

resolve some of these difficult issues will be that it is important for the

law to be consistent with its interpretation of the nature of software

LL.M. thesis, Les Hatton, 1999 Page 8

across all points of contact between the two. Here then, case law in

copyright, criminal and other aspects of the law will be collected and

analysed to look for points of both consistency and inconsistency. As

a result, this chapter can be viewed as source material to help guide

legal practitioners in how future legislation might develop for

software, in order to preserve a consistent interpretation.

In this chapter, the point will also be made that the contract is of

unusual importance in software engineering. In normal life, contracts

are written not to be used. In other words, the contract clearly defines

the obligations of each of the parties in order that conflict can be

avoided. They are written in the expectation that one party is very

likely to be able to supply what the other party is contracting for.

However, as described in chapter 1, it is commonplace for software

projects to fail to some degree. Given that the normal remedy of

rescission is unfortunately of little value in such cases, software

contracts should be written from the point of view that the supplier is

very likely to encounter difficulties in supplying and more constructive

avenues should be described in the contract so that both parties get

something more useful than mere rescission in the likely event of a

partial failure. Total failure, (which is also depressingly likely in

software engineering), of course leaves little option for a constructive

solution for both parties.

Chapter 5:

This short chapter brings the thesis to a conclusion suggesting areas

of further work.

The thesis is supplemented with an Appendix, which takes a quick

look at recent developments in the US pertaining to the Universal

Commercial Code (UCC), which in essence provides a set of implied terms

to standard contracts and contrasts the UK position.

LL.M. thesis, Les Hatton, 1999 Page 9

Finally, the thesis is written in the third person but the footnotes

represent personal additional commentary and are therefore written in the

first person to reflect my 25 years experience as a professional computer

scientist. This experience of course weakens my legal viewpoint (in spite of

reading furiously) but it greatly helped to identify a number of legal

inconsistencies which are very likely to lead to conflict as time passes.

Les Hatton

December, 1998

lesh@oakcomp.co.uk

LL.M. thesis, Les Hatton, 1999 Page 10

Chapter 1: Software engineering from a computer
science perspective

It is sometimes difficult even for professional engineers in other disciplines

to understand the vicissitudes of software ‘engineering’ and so in this

chapter, the author will attempt to explain its history, its successes

and most importantly its failures, in the hope that the legally-trained

reader will get some perspective on this most difficult and still

immature of engineering areas. Key points will be highlighted by

surrounding in a box as:-

This is a key point.

The author will make the point that any software system other than

the most trivial is overwhelmingly likely to contain faults. Many of these

faults could have been avoided but were not because of generally poor

practices. However, a significant number of software faults are unavoidable

because of the intellectual complexity inherent in software development.

These faults will fail in generally unpredictable ways throughout the life-time

of the software. Attempts to correct them will frequently fail, in turn injecting

new faults and it is very likely that any software system will exhibit

unexpected behaviour throughout its life-time. Amongst all this bad news is

the fact that software controlled systems are not only considered beneficial,

but all of society absolutely depends on them now and has for some 10-15

years. In other words, they are here, they are annoyingly fragile and they

can’t be avoided. The law must find an appropriate balance between

punishing developments which are demonstrably sub-standard, (and there

are plenty of these), and not punishing developments which are highly

beneficial but exhibit unavoidable failure, otherwise there will be a strong

danger of throwing out the baby with the bathwater which is to nobody’s

advantage. It is hoped that this chapter makes the distinction clear enough

to guide a legally-trained reader.

LL.M. thesis, Les Hatton, 1999 Page 11

Digital convergence

Before embarking on a short history of software engineering, it is perhaps

appropriate to start with a discussion of digital convergence. In essence

this describes the process whereby a particular form of expression, artistic

or otherwise becomes digitally represented or digitised (i.e. represented as

a sequence of 0s and 1s). This process is spreading across many

previously independent areas blurring the distinction between them. This

has a particular impact on the law.

The law has become accustomed to dealing with artistic works over

the last 100 years or so. In particular, the law of copyright embraces an

artistic work although quite rightly without seeking too seriously to define

one, as for example, under what circumstances a pile of bricks is

considered to be an artistic work1. Artistic works include inter alia, pictures

and pieces of music in whatever format. This is particularly relevant today

as digital technology matures to the point where what was previously the

province of analogue media, (i.e. continuous media), is now routinely

expressed digitally.

Digital music

The human ear has a maximum dynamic range of between around 30 Hz.

and 20,000 Hz., (1 Hz. = 1 Hertz = 1 cycle per second). Adults have a rather

smaller range of between around 30-40 Hz. and around 10-12,000 Hz.

Even in nature, sounds have a natural upper limit of frequencies set by the

physical mechanism by which they are produced. A plucked string,

oscillating vocal chords, an earthquake are all governed by restrictions

placed by the laws of physics. Suppose a typical maximum frequency is F.

Now, there is a very famous theorem in signal processing known as the

Whittaker-Nyquist-Shannon theorem, (see for example, [1]), which states

that if a signal of maximum frequency F continuously varying in time, (i.e.

with a value at every point in time), is represented by its values at discrete

1 It appears to be an artistic work when it is in the Tate, which begs the question as to whether the walls
holding the roof up are also artistic works.

LL.M. thesis, Les Hatton, 1999 Page 12

points of time separated by 1/(2F) seconds, (a process known as sampling

or analogue-to-digital (A/D) conversion), the signal is exactly reproduced.

As an example, if we sample a piece of music, (which is effectively

limited to sounds no higher than 20,000 Hz. because we couldn’t hear them

anyway), and we sample it (i.e. measure its value digitally) every

1/(2x20,000) second, or every 0.00025 second, the result is

indistinguishable from the original analogue (continuously varying in

time) signal. In other words if we converted the digital sample signal back

into a continuously varying signal in time, (a process known as digital to

analogue (D/A) conversion), the result would be absolutely

indistinguishable from the original. All of the information present in the

original signal before sampling would be present in the reconstructed

signal.

This process has reached its current zenith not only with the de facto

standard digital recording of music, but also in the production of music with

MIDI, (Musical Instrument Digital Interface). In MIDI, any stream of music is

converted in real-time to a sequence of 1s and 0s. For example, when a

musician plays a MIDI keyboard or a MIDI guitar, the signal from the

instrument is not a continuously varying voltage level as with older

technology, but a series of 1s and 0s in a specific format known as MIDI.

In essence then, we have a found a non-unique (there are various ways of

doing this) representation of 1s and 0s which are precisely the same as the

original piece of music.

Digital Art

Although it took a little longer than in the case of music, precisely the same

has happened with graphic works of art such as pictures. The human eye

has a spatial bandwidth limitation just as the ear has a temporal bandwidth

limitation. In other words, the eye cannot see finer detail than a certain

point, (depending on light and colour, the fine detail of a digital image of

around 200 dots per cm. cannot be seen) just as the ear cannot hear finer

LL.M. thesis, Les Hatton, 1999 Page 13

temporal detail than a certain point. Precisely the same Whittaker-Nyquist-

Shannon theorem holds and it is perfectly possible to produce a digital

representation of a great work of art, which, apart from the medium on which

the original work of art is represented, is essentially indistinguishable from

the original, except with a microscope. If the image is subjected to D/A

conversion back to an analogue image, it would be absolutely

indistinguishable.

This has a number of rather disturbing corollaries. For example,

photographs should no longer be admissible as evidence. The technology

has existed for some time now to scan an image from a photograph, (the

scanning is typically done at 500-1000 dots per cm. to guarantee precise

reproduction), modify the image using a number of digital image processing

techniques such as spatial deconvolution, dithering, anti-aliassing and so

on, and replay the image back onto photographic film. The resulting film

should not be taken as evidence but would appear as a perfectly viable

photograph and it is very difficult to determine whether it has been

tampered with. (This process has featured in a number of films, for

example, the film based on the Michael Crichton book, Rising Sun,

although it may well be that the public do not realise that it can be done. A

more recent example is the film Titanic, wherein many of the scenes

associated with the ship itself are built up from a mixture of analogue clips

and digital simulations, merged together into a composite which is very

impressive indeed. Only the closest inspection can reveal the slightly

awkward nature of the moving figures in the computer graphics. In another

5 years or so, this distinction will effectively disappear also. It is quite likely

that within 10 years, a new Humphrey Bogart film could appear with an

entirely digital Bogart persona). This should prove intriguing to copyright

lawyers.

As a final comment on this area, it should also be pointed out that

there are many different ways of representing the same picture in digital

form. These are called digital formats and some common examples include

LL.M. thesis, Les Hatton, 1999 Page 14

TIFF, GIF, JPEG, MPEG, Base64, PICT and so on. Each of these is different

and yet the same picture would be produced when each of these formats is

correctly rendered by an appropriate display program.

Digital speech

Precisely the same situation occurs with speech. The technology for

converting speech into 1s and 0s has existed for some time. Its

decomposition into phonemes permits another digital representation of the

same thing.

Signal encryption

This represents a slightly different situation. The need to make ‘plain text’

transmitted by a communications line secure in some sense has been

around for a long time. In W.W.II, the Enigma encryption machine converted

plain text into scrambled plain text on a character by character basis. The

information in both sets was precisely the same but the latter was entirely

inaccessible without a correctly configured Enigma machine or its

equivalent. Nowadays, the vast bulk of transmitted text is already encoded

in 1s and 0s usually using the standard ASCII code, (for example in this

code, the space character is represented by the binary code ‘00100000’).

For encryption, this digital representation is converted into another digital

representation using some kind of encryption technology such as the RSA

public-key system.

... and software

What has this all got to do with software ? The most important issue from the

point of view of software is that the law has evolved at least partially to

tackle some of the issues posed by a digital representation of an artistic

work without getting too bogged down in the physical medium. However, in

each of the above cases, the resulting digital representation is simply a

stream of 1s and 0s. Without knowing how the stream arose, it is

impossible to divine what they correspond to. Now a piece of software

when viewed on disc or down a communications medium is simply another

stream of 1s and 0s. Not only that, it is perfectly possible to define

LL.M. thesis, Les Hatton, 1999 Page 15

transformations which can map between different representations, for

example,

Any computer program can be converted into a MIDI sequence playable as

a piece of computer music, (this would however rely on the court’s known

LL.M. thesis, Les Hatton, 1999 Page 16

reluctance to decline whether something was musical2). As a matter of

interest, to complicate things further, the same is true for any digital

representation of a picture. In other words, a picture could be played. By

the converse, a piece of music could be displayed as a picture, and it is

perfectly possible, (although unlikely), that the digital manifestation of a

piece of music or a picture when fed into the control system of a computer

could cause the computer to misbehave dangerously. For example, an

error in a MIDI sequencing program could cause an anomalously loud note

to be sent at a high frequency causing hearing damage to the wearer of a

set of headphones. The digital convergence is thus complete.

This fundamental convergence between entirely different entities

needs to be borne in mind whenever the relationship of digital information

with the law is being considered and a consistent viewpoint is being sought.

This theme will be returned to later for example, when the issues of

copyright and ‘goods v, services’ are discussed.

The nature of software

The essential nature of software then is that it cannot be weighed, touched

or easily quantified. Like literary and musical works, it is a product of the

human intellect. Unlike literary and musical works, it has no direct effect on

humans, rather it causes a programmable computer system to behave in

some way and this may then have a direct effect on humans.

Software evolves like a mathematical proof although rarely with such

rigour. It has its own family of notations, known collectively as source code,

which the computer programmer writes directly as prose. Each notation is

known as a programming language, of which there are hundreds. Some of

the more common ones include Ada, used in many defence and aerospace

software systems, C and C++, used in most consumer PC software and also

in embedded control systems for devices as disparate as medical scanners

2 This would save the embarrassment of deciding whether a vocal work based on the Major 9th lasting for
some 75 minutes by Karl-Heinz Stockhausen was musical or not. (My own opinion is that it is as musical a
work as a pile of bricks in the Tate is an artistic work).

LL.M. thesis, Les Hatton, 1999 Page 17

and cars, Fortran, used for example in nuclear engineering and Java used

in Internet programming. Chronologically preceding these so-called high-

level or expressive languages, was assembly language, a so-called low-

level language. In essence, the lower the level, the more source code is

required to achieve a typical action. Each programming language is

supposed to represent a complete, consistent logical framework in which a

set of desired actions, or algorithm, can be expressed. However, even in

this apparently simple goal, computer scientists have failed and no

programming language has ever been free of ambiguity in some form or

other, a point which will be discussed later. To understand the implications

of ambiguity in written prose, natural languages abound with it. Consider

for example the various meanings of “Fruit flies like a banana.”.

Source code is measured in lines of code. An example is given in

Figure 1.1 which shows 14 lines of a network switching telephone system.

The overall system comprises some 3 million such lines. A simple

inadvertent transposition of just two letters can correspond to a catastrophic

change in behaviour of the program. For example, the underlined line of

code should not be there, it was introduced inadvertently in a simple

modification to the original source code in January 1990. The effect of this

inserted line of code is that when a sending switch is out of service and if

there is a residual message stored, the processing of the incoming

message is incorrectly skipped. This leads to the database being left in an

inconsistent state. This caused a propagation of errors which were not

handled, swamping first the originating network and then all the connected

networks. Had the upgraded software only been introduced in one network,

the older version would have handled the problem correctly in surrounding

networks, but the corporate faith in the update was such that all caution was

thrown to the winds and all networks were upgraded simultaneously.

Shortly afterwards and within around 15 minutes of this ‘fix’ being

inserted, this led to the loss of all long-distance telephone lines in the

United States for several hours, the cost of which was estimated by some

LL.M. thesis, Les Hatton, 1999 Page 18

sources as being around $1.1 billion. Even relatively simple systems would

today have up to around 100,000 lines of source code, whereas the most

complex systems might have 10 million lines of source code or more, (for

example the European Fighter Aircraft onboard computer systems).

It is useful for the practising lawyer to contemplate an industry in

which a single inadvertently inserted line in the specification of behaviour of

a system comprising several million such lines can have such an enormous

impact, given that legal contracts for example frequently have simple

typographical mistakes. Roughly speaking, one clause in a legal contract

contains the same semantic content as one line of software and a typical

legal contract might be 10,000-100,000 times simpler, containing only 50-

100 clauses and even then could be considered relatively difficult to

understand. To expand the analogy further, coupling between clauses in

legal contracts is known to make things much more complex. For example,

it is common to insert a clause to the effect that ‘this contract comprises the

whole of the agreement between the parties privy to this contract’. Of

course, this cannot be true because all contracts are subject to implied (i.e.

additional) terms for reasonableness as defined in the Unfair Contract

Terms Act 1977. In other words, every legal contract inherits properties

from at least one statutory document. Not only this, but in the case of

dispute, a court may imply terms into a contract based on two well-known

bases:- a) to make the contract have business efficacy or b) if the parties

had been asked by an officious bystander what would happen in a given

event, they would have answered in the required sense “of course”3. The

complexity invoked by this leads to many extremely complex legal

arguments and yet is still trivial in comparison to the word-processor which

is being used to write this thesis which comprises several hundreds of

thousands of lines of source code closely interacting with an operating

system involving some millions of lines. Both have exhibited numerous

3 Quoted directly from the words of Staughton LJ in Saphena Computing Ltd. v. Allied Collection Agencies
Ltd. (Court of Appeal), (1989).

LL.M. thesis, Les Hatton, 1999 Page 19

failures in the time the author has been using them. Given the stupendous

complexity of such a system, it is hardly surprising.

...

switch(message)

{

case INCOMING_MESSAGE:

if (sending_switch == OUT_OF_SERVICE)

{

if (ring_write_buffer == EMPTY)

send_in_service_to_smm();

else

 b reak ;

}

process_incoming_message(); /* skipped */

break;

...

}

do_optional_database_work();

...

Figure 1.1 A small fragment of code responsible for one of the most expensive software
failures in history so far. The underlined line should not be there - it was introduced
inadvertently during a software upgrade. The resulting catastrophic effect on the system is
described in the text.

The programmer’s source code, also known as human-readable, (a

misnomer as humans can read and understand any of the codes used in a

machine, although some with greater facility than others), cannot typically

be understood by a computer however. For this to occur, the programmer’s

source code is translated into object code, (also known as machine-

readable), using another piece of software known as a translator. The most

common form of translators are known as compilers and interpreters.

Compilers and interpreters are themselves immensely complicated pieces

of software usually requiring hundreds of thousands of lines of source code

LL.M. thesis, Les Hatton, 1999 Page 20

to delineate all their actions. So the input to the translator is source code

and the output is object code. Object code has no natural line-based

structure and is therefore measured in units known as bytes. A byte is 8

bits, each of which can either be true or false, (represented by the digital

values 1 and 0). Today, even a simple installation of an office automation

system with a word processor, presentation package and a spreadsheet

can easily consume 100 megabytes or 108 bytes.

In essence, and without loss of generality, this is stored in magnetic

form on some medium, for example, a floppy disc, a hard disc, a tape or

cartridge, a CD-ROM and numerous other media. In this form, the software

now appears to be intangible, but is no more intangible than a piece of

music for example, with which most people are familiar. The magnetic

medium is then inserted into a computer just as a music CD is inserted into

a CD player, and the internal electronic mechanisms of the computer cause

a series of actions to take place; devices might be controlled, a computer

screen could be filled with graphics and so on. We say the software is now

executing. The act of executing a piece of software actually copies it from

its original medium to a temporary storage medium inside the computer

known as RAM, (Random Access Memory). This act of copying has

attracted much interest from specialists in copyright. The act of execution of

a piece of software always involves some form of copying. To complicate

things further, copying also takes place during a process known as

defragmentation whereby the computer’s operating system moves things

around its discs for housekeeping purposes such as efficiency.

The analogy with music is very close and will be referred to later. Of

course when we put a music CD in a CD player, the internal electronic

mechanisms of the CD player execute it and the result is music. In this

case, we say the music is playing. The analogy with computer software is

even closer because most computer CD storage devices, (CD-ROM), will

also play musical CDs, so the physical representation, especially with

digital music, is essentially identical. As we will see later, the close

LL.M. thesis, Les Hatton, 1999 Page 21

relationship between music and software in many aspects will be

enlightening from a legal point of view. The notion of copying even appears

in musical CDs as it is the basis of anti-shock technology. A CD resists

shock by copying the next few seconds of music into RAM built into the CD

player. When the CD player is jarred sufficiently to disturb the laser, the CD

automatically switches to its RAM copy whilst the laser settles down. Only if

the period of settling down exceeds the capacity of the RAM is any

interruption of music observed This copying is closely analogous and

physically identical to the copying which takes place in a computer prior to

the execution of a piece of object code.

The phases of software development

A typical software system will ideally go through the following recognisable

phases:

a) Requirements

b) Design / Specification

c) Implementation

d) Unit testing

e) System and integration testing

f) Release

g) Maintenance

and increasingly likely as the years go by,

h) Litigation

Entire phases can be missed out and in other cases, sub-phases

may be inserted, but this sequence captures the ideal model without any

loss of generality. The steps a) - f) are known as the development phase,

which is everything which takes place before the software system is formally

LL.M. thesis, Les Hatton, 1999 Page 22

given or released to the intended customer for the first time. It is common

for computer scientists to organise these phases using various models such

as the waterfall and V- models, [2], but this is frequently window dressing

given the parlous state of much software engineering. The V-model is

instructive in how it encourages various kinds of verification at different

stages in the life-cycle as shown in Figure 1.2

Design

Specification

Implementation Unit test

Integration test

System test

Figure 1.2 The V-model of software engineering. Design activities on the left hand side of
the V are associated with corresponding test activities on the right hand side. The model is
idealised in the sense that software development is rarely this tidy.

Following the development phase, the software system enters what

is euphemistically known as its maintenance phase. Maintenance

comprises essentially three components:-

• Corrective maintenance

This relates to the correction of defects or departures between actual

and expected behaviour. Actual behaviour is also known as its

functionality and does not normally include performance, or the

speed at which the actual behaviour is achieved. Note that expected

behaviour is defined by the requirements. If there are no

requirements, there are no defects.

LL.M. thesis, Les Hatton, 1999 Page 23

• Adaptive maintenance

This relates to modifications to the software which do not affect its

functionality, but would affect other attributes such as its

performance.

• Perfective maintenance

This aspect relates to extending or otherwise modifying the original

actual behaviour to model the intended user’s evolving notion of

what the software system should be able to achieve. This occurs

either because the very imperfect initial requirements stage fails to

clarify all the intended goals or because the intended user changes

his or her mind about what the software should do based on actual

experience using it. In other words, this latter possibility could not

generally have been foreseen at the requirements stage.

Together the development phase and the ensuing maintenance

phase make up the software life-cycle, the life span between the original

idea and the point at which the software is no longer used.

The distribution of cost across the development stage and the three

components of maintenance is somewhat surprising as indicated by Figure

1.3.

LL.M. thesis, Les Hatton, 1999 Page 24

20%
development

phase

80% maintenance phase

Life-cycle
Corrective part

(as much as 50% of
all maintenance)

Figure 1.3. This diagram combines together two widely accepted maintenance statistics, [3],
[4], leading to the conclusion that corrective activities may consume as much as twice as
much resource as the original development.

These results are summarised graphically in Figure 1.4.

P
e

rc
e

n
t

o
f

to
ta

l
lif

e
-c

yc
le

co

st

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

D
ev

el
op

m
en

t

C
o

rr
e

ct
iv

e
M

ai
nt

en
an

ce

A
da

pt
iv

e
M

ai
nt

en
an

ce

P
e

rf
e

ct
iv

e
m

ai
nt

en
an

ce

Figure 1.4: Shows the approximation distribution of costs over the entire software life-cycle.

LL.M. thesis, Les Hatton, 1999 Page 25

In other words, for every pound spent on development, as much as

two pounds are spent in fixing defects in the software, after it has been

given to the user. This may indeed come as a surprise to the typical

consumer as it appears to represent a level of unreliability which would be

considered unacceptable in any other sphere. However, in spite of

considerable dissatisfaction, such as that experienced with PC software,

(see for example, [5]), nothing has so far changed, although it seems clear

that the consumer would not accept levels of reliability typical of PC

products in a washing machine for example, as evidenced by Table 1.

Operating

System

Period of

measurement

Hours used Total

defects

Total

reboots

Defect

frequency

Windows’95/AST

P90 Pentium

April - June

1996

23 31 5 1 per 0.7

hours

Macintosh

7100/66 OS

7.5.1

July 1995 -

June 1996

467 146 68 1 per 3.2

hours

Unix Sparc, HP

various OS

Nov 1985 -

June 1996

> 5000 < 5 1 < 1 per 1000

hours

Linux, Slackware

on Pentium P90

April 1995 -

June 1996

26 0 0 Not yet

defined.

Table 1: This table indicates defect rates of various popular operating systems in the author’s
personal experience spread over the last ten years. The author keeps an Excel spreadsheet
record of each operating system and log each defect as and when it occurs when the bugs in
Excel itself permit.

Software reliability

It is worthwhile exploring why PCs appear to have worse levels of reliability

than other systems. In principle, it is very simple. Every system has a trade-

off point between reliability and availability as exemplified by Figure 1.5.

Here, the Rate of Occurrence of Failure (ROCOF) is plotted against usage

time, i.e. testing time, during development. As the system fails, faults are

LL.M. thesis, Les Hatton, 1999 Page 26

identified and corrected so that the system ROCOF hopefully falls4.

Systems never attain perfection with zero ROCOF so that they have to be

released at some stage at some level of reliability, whatever their intended

use. The point is that the release time is an economic decision balancing

the maintenance and possibly legal costs of releasing a system with defects

against the economic benefits of beating the competition to market. For a

safety-related system, these would hopefully work in favour of reliability

giving a release point considerably to the right on the Usage time axis.

However, reliability is not a selling point for PC software. Users seem

mostly happy to put up with it failing frequently provided there are lots of

features to play with. Consequently, it is economically sensible to release

software early on the Usage time axis to maximise the marketing

opportunity. The massive success of companies like Microsoft bears mute

testimony to this strategy. PC software will only get better if reliability

becomes a user requirement.

4 Regrettably, it doesn’t always.

LL.M. thesis, Les Hatton, 1999 Page 27

•
•

•
• •

•

•ROCOF

USAGE TIME

Fitted Curve

Measured reliability

Desired reliability

Figure 1.5: Reliability improvement with time of a well-behaved product. As time goes by,
corrective maintenance feedback improves the reliability. The point at which the product
achieves sufficient reliability for its intended purpose depends entirely on what that purpose
is. There is a trade-off between earlier availability and the risk of higher unreliability.

Regrettably this simple economic truth is not well understood by

system integrators and PC levels of reliability are already found in some

consumer systems by virtue of the fact that these systems actually used PCs

to control other systems. For example, on a flight on Singapore Airlines two

years ago, the inflight entertainment system crashed 3 times in a 14 hour

flight. When the cabin manager was questioned, he stated that it was

controlled by a PC and that this was a frequent occurrence. Designing a

system to stay functional for 14 hours around a component with a mean

time between failures of a couple of hours is clearly a highly dubious

methodology although the attractiveness of off the shelf hardware had

clearly overridden such considerations. More worrying is the fact that more

critical systems such as the latest generation of medical scanners is being

controlled by Windows NT, a system with a not much greater reliability. This

issue will rapidly become more widespread given the observation that the

amount of software in consumer electronic appliances is doubling every 18-

24 months, [6], an example of which can be seen for example in the

commercial aircraft industry as shown in Figure 1.6.

LL.M. thesis, Les Hatton, 1999 Page 28

Year introduced into service

K
w

o
rd

s
o

f
o

b
je

ct
 c

o
d

e

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 9 7 4 1 9 8 1 1 9 8 3 1 9 8 8 1 9 9 3

2 3 2 0 0

2 0 0 0

4 0 0 0

1 0 0 0 0

Figure 1.6 Graph illustrating the rate of increase in software measured in Kwords (1000
words) object code, onboard the Airbus AXXX series as described by [7].

Against this backdrop, the density at which defects occur within a

software system, (known as the defect density and usually measured in

defects per 1000 lines of code or defects / KLOC), does not seem to be

improving particularly as evidenced by Figure 1.7 which shows the defect

density reported in software measurement at NASA Goddard in the United

States over a 15 year period.

LL.M. thesis, Les Hatton, 1999 Page 29

Errors per 1000 lines at NASA Goddard 1978-1990

E
rr

or
s

pe
r

10
00

lin

es

0

2

4

6

8

1 0

1 2

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

Low

Average

High

Figure 1.7 Graph published in the December 1991 special issue of Business Week showing
the slow decrease in software defect density at NASA Goddard. The curves marked High,
Average and Low are the defect densities of the best, average and worst components
respectively of each generation.

In other words, although the difference between good and bad has

shrunk by a factor of 4 over a period of 15 years, the underlying defect

density of the best components of any generation has barely changed.

This, together with the previous observation that the amount of software is

doubling around every 18-24 months leads directly to the unpleasant

conclusion:-

The number of defects in consumer electronic devices will double

approximately every 18-24 months.

This certainly seems to have the makings of a crisis to come, but the

most important point from a legal view is that:-

All software contains defects and significant amounts of software contain

large numbers of defects. A considerable number of these could have been

avoided by better practice, but not all, as certain categories of defect appear

to be by nature unavoidable, and in some cases at least, unforeseeable. It

is the nature of the beast with its current state of development.

LL.M. thesis, Les Hatton, 1999 Page 30

That software defects are indeed visible in consumer electronic

devices can be seen from the author’s own observations detailed below. In

each case comments have been added as to why the failure is most likely

due to software.

LL.M. thesis, Les Hatton, 1999 Page 31

Nature of problem Comments

1. New digital answering machine

has to be rebooted

approximately every 3 months

through, “micro-processor lock-

out due to software failure”.

Previous analogue tape based

machine did not fail in 5 years of

use. Each time the digital

machine fails, all the stored

messages are lost. The user

manual contains a fault-tree

which confirms that this is a

software failure.

2. FAX machine has been

rebooted once in 18 months.

Very similar behaviour to item 1.

3. ABS braking system on a

contract hire Land Rover

Discovery failed every 3 months

for a year until the computer

controlling system was finally

replaced, (at a cost of £2000),

after consultation with Rover

engineers.

The failure caused complete

loss of brakes necessitating

stopping the vehicle with the

hand-brake and in the third

case, driving off the road to

avoid hitting the car in front.

Although difficult to pin down,

this looks like a requirements

fault.

4. New ‘fuzzy logic’ based washing

machine displays the wrong

panel lights. It shows washing

when spinning and vice versa.

Well, really ! This is certainly a

requirements fault.

5. Electronic sliding roof in hired

Vauxhall Omega Estate

oscillated until operating button

held in for two seconds to reset

it.

In this case, a small footnote at

the back of the operating manual

warned of this possibility.

Resetting is a standard recovery

for software failure.

LL.M. thesis, Les Hatton, 1999 Page 32

6, Land Rover radio requires two

presses rather than one press of

a positive action software

controlled on/off switch about

10% of the time in order to turn it

off.

The same radio also displays

occasional random volume

variations, (also software

controlled), and if a traffic RDS

interrupt occurs during a pause,

the radio jumps to a random

state. The nature of these has

the unmistakeable reek of

software.

Table 2: A catalogue of computer and in most cases software related consumer electronic
product problems experienced by myself in the last two years.

The production of software

This is a suitable point to return to a description of the means whereby

software is produced as described by the phases a) - f) at the beginning of

the last section.

The requirements phase

One or more people gather together and attempt to define exactly what the

software will do when it is loaded and its execution started within a suitable

computer. The group will ideally consist of engineers who will produce the

software, managers who will manage its development, marketing people

who will sell it, testers who will help verify that the software achieves its

intended goals and users who will actually use it. In practice, this ideal

situation is rarely achieved. The group may consist of one person having a

‘great idea’ in the comfort of their study. Different sub-groups of people may

be absent, for example, the testers, and not infrequently representatives of

the intended users. There may be so many people present that agreement

on the intended goals is impossible and the meeting acrimoniously

degenerates into a series of mutually contradictory goals.

If the reader is surprised by this seemingly chaotic and arbitrary

situation, requirements capture as it is known is one of the great unsolved

problems of computing science. It is subjective, rarely supported by any

LL.M. thesis, Les Hatton, 1999 Page 33

kind of automation, wayward in its nature and frequently incomplete and

inconsistent. Regrettably, it is also inextricably linked with the perceived

quality of any resulting software. Mistakes at the requirement phase are

usually the most expensive to put right and are frequently never

satisfactorily corrected.

Design / Specification

In the design and specification stage, engineers take the original

requirements and try to produce a design which will satisfy those

requirements. Again, this is more of an art than a science and there are a

plethora of different design methodologies, no one of which has become

dominant. Designs are generally not supported well by automation and are

fundamentally difficult to verify, although some success has been obtained

using essentially manual techniques known as design inspections,

whereby a design will be independently inspected by a few people who will

then report their findings back to the original designers. From the design, a

specification can be written in a form suitable to be turned into source code

by the engineers.

Implementation

In the implementation phase, the specification for the software system is

turned into source code. In many cases, it may also reference source or

object code produced by third-parties, a mechanism known as re-use.

Many defects are introduced at this stage due largely to the inadequacies

and fashion-based nature of programming languages. There is much lively

debate amongst computer scientists about the ideal programming

language, but from the point of view of defects in the resulting system, the

differences seem far less obvious, [8]. Various techniques have been

promoted to reduce the number of defects introduced at this stage, by far

the most successful of which is the code inspection, akin to the design

inspection described above. However, such is the immature nature of

software engineering that comparatively few companies bother.

LL.M. thesis, Les Hatton, 1999 Page 34

It should be noted that at this stage, ambiguity essentially

disappears. The nature of programming language compared with design

methods is that the engineer must make his or her mind up about the

intended action of the software even if the specification does not seem

clear. Ideally, ambiguities should be resolved with designers, but this

frequently is not done in the inevitable rush to produce a system which

accompanies most software developments. The resulting behaviour is

known colloquially amongst programmers as an ‘undocumented feature’.

The word undocumented would be more appropriately replaced by

inadvertent.

Unit testing

In unit testing, each component is tested as it is produced, usually by its

developers. The source code is translated into object code automatically by

the use of software tools generally supplied with the computer as described

earlier, and then executed and its actual behaviour compared with the

intended behaviour. It has long been recognised that, largely due to

inadequate education and the attitude that testing isn’t as ‘exciting’ as

development, that engineers are not very good at testing their own code

and many defects are traditionally missed here which should have been

detected. Furthermore comprehensive testing can be expensive and is

frequently truncated to get the software system ‘out of the door’. To gain

some idea of just how inadequate testing is in practice, studies such as that

done by [9] show that on average, only around 40% of the lines of source

code in any system are actually exercised by any of the tests carried out

before the software is delivered to its intended users. In other words, on

average, the majority of a system has never been tested in any form before

release.

System and integration testing

At this stage, individual components are glued together such that their

individual functionality combines together to produce some kind of system

which collectively obeys the original requirements. Implementation defects

LL.M. thesis, Les Hatton, 1999 Page 35

found at this stage are expensive to correct as the component must be

returned back to the implementation stage. In some cases, design defects

are found and the system as a whole may have to be returned back to the

design stage for appropriate re-design. This may even be done

deliberately using the mechanism of prototyping, whereby a system is

implemented in a skeletal form to alert the designers to any fundamental

deficiencies.

Release

At this point, the software is released to its intended user. Defects found

here can be very expensive indeed. For example, a defect in a car’s

braking system could lead to a recall of many thousands of cars5. The

object of software testing is to minimise the number of defects which are

released. Elimination is generally believed to be either impossible or

commercially unachievable.

Taken together, these phases may appear somewhat involved and

error-prone to the reader. This is indeed the case as can be seen by data

produced on the relative frequency of achieving a satisfactory conclusion to

a software development project. Figure 1.8 is an example of such data.

This data was produced by the Audit Office of the United States Department

of Defence covering the development of some $140 million worth of military

avionics projects in the period 1985-1990.

5 When I first wrote this, I was thinking hypothetically, however this has now happened. On 22 May, 1998
in the USA, it was reported ([10]), that coding problems for anti-lock brakes may affect 4 million GM
pickups and cars. These have experienced very long stopping distances leading to 15,000 complaints in
last 3 years. Robert Lange, director of safety engineering at GM, said they have now ruled out corrosion and
are focussing on computer algorithm problems. He also stated that he thought fewer than 1 million of the
trucks would be likely to be affected by a recall - a contention that federal officials are expected to dispute
vigorously.

LL.M. thesis, Les Hatton, 1999 Page 36

Delivered, not used

Paid for, never delivered

Used, reworked, later

abandoned

Used after extensive

modifications

Used as delivered

Figure 1.8: The risk associated with software development. Data due to the Audit Office of
the U.S. Department of Defence on military avionics software development in the period
1985-1990.

As can be seen, only 10% was delivered in a useable form and only

2% was delivered in a form which could be used without extensive re-work.

Again this may come as a surprise to the reader but failure of software

projects to achieve their intended goals is the rule not the exception. That

these data are still relevant is confirmed by the fact that the literature is full

of examples of contemporary grand failures such as the London Ambulance

Service system, the Taurus project of the London Stock Exchange and so

on, [7], [11], [12], [13] , [14]. Many of these failures have all too familiar

patterns of management incompetence and over-ambition, [14]. Truly we

are not learning the lessons of system failure easily.

Types of software

Software can be delivered in a number of forms and this is particularly

relevant to the legal viewpoint. There are traditionally three categories.

COTS

COTS is an acronym for Commercial Off The Shelf. In other words, COTS

software is developed by a manufacturer with no formal input from the

intended users and it is sold to the user community as possessing certain

LL.M. thesis, Les Hatton, 1999 Page 37

functionality. The potential user assesses from the description and perhaps

behaviour of this software whether it satisfies a particular need or not and if

it does so at a reasonable price, will buy it. The requirements may have

originated entirely within the supplying company or may have arisen from a

third-party, such as some legislative function.

The important thing is that the intended user did not in any formal way

influence the eventual behaviour of the software, although they may of

course have taken part in a market survey.

Modified software

In this case, the user may have identified a piece of software as capable of

satisfying all of their needs but only with some modification. In this case, a

contract may be set up between the user and the producer to alter the

behaviour of the product to suit the needs of the user.

Altering the behaviour of a software product can be done either with

source code or by object code. In the case of source code, engineers will

read the source code and introduce changes necessary to produce the

additional functionality. The process is fraught with problems as

exemplified by the known fact that modified code has about 3 times as

many defects per thousand lines of code as unmodified code. This is

particularly relevant to the current Millennium (also known as Year 2000 or

Y2K) preparations. To paraphrase Winston Churchill,

“Never in the field of engineering has so much change been done

by so many people to so many systems with so little understanding

of the effects of such change”

For example, as quoted by [15], the rate at which defects could be

injected by such a process could be as high as one injected defect for every

three changes. This is likely to lead to significantly reduced levels of

reliability compared with the same systems before Y2K changes. No other

engineering discipline has such a high probability of injecting further

defects as a result of correcting existing defects and this should be borne in

LL.M. thesis, Les Hatton, 1999 Page 38

mind by the legal reader. It is not deliberate, it is simply that we don’t know

how to stop it happening.

In the case of object code, it is very much more difficult to divine the

relationship between the code and the existing functionality. A small

number of experts can read object code directly but it is extraordinarily

laborious for all but the most trivial of programs and in general it must be

dissembled using a tool which operates in the opposite direction to the

translator or compiler mentioned earlier. In fact, this notation is inaccurate

as there is a historic intermediate step which is often forgotten. As this use

has crept into existing legislation such as the EC directive [16], the original

definitions are indicated in Figure 1.9

High-level source
code, (Ada, C, C++,

...)

Low-level source
code, (assembly

code)

Machine or object
code

Decompilation Dissembly

Compilation Assembly

Figure 1.9 The actions of compilation and dissembly.

In either case, the user specifically takes part in the definition of the

requirements of the eventual system, perhaps contributing significantly.

Bespoke software

In bespoke software development, the software does not initially exist in any

form usually and the user is involved from the beginning in the definition of

the requirements for the eventual system. To a greater or lesser extent, the

developer may which wish to re-use components of software which have

been previously written but the essential nature of this kind of software is

LL.M. thesis, Les Hatton, 1999 Page 39

that the user has an intended functionality in mind and wishes to

commission a piece of software to carry out this functionality.

In this case, the user is instrumental and plays a central position in the

definition of the requirements of the software. Note that even though

bespoke, such systems may also use third-party products within them as

indeed might COTS or modified systems.

So we see that one of the principle differences between these three

types of software lies in the degree to which the eventual user was involved

in the definition of the requirements. This turns out to be a key point in

understanding the differences between the cases quoted in Appendix A.

It should be noted that a segregation of software into three discrete

forms is entirely artificial. In practice there is a continuum between on the

one hand, COTS software and on the other, entirely bespoke software. This

continuum is shown in Figure 1.10 along with its relationship to

requirements.

Degree to which user requirements used in software development

COTS Modified Bespoke

Insignificant Instrumental

Figure 1.10: Software as a continuum between COTS and bespoke and its relationship with
the degree to which user requirements influenced the software development itself.

The growth of engineering principles

Engineering principles take many years to evolve. The science of bridge

building and other civil engineering structures has taken many hundreds

and in some cases thousands of years to mature. As long ago as 3500

years, the ancient Egyptians had a unit of measurement - the cubit - which

varied by less than 8% in the ancient world. Indeed, they even

LL.M. thesis, Les Hatton, 1999 Page 40

accommodated this variation eventually by defining a royal cubit, some 8%

longer than the ordinary common man’s cubit. They also knew how to

construct a right angle using a length of string, a pivotal rod and a marker

rod and had technologies for moving and manipulating very large building

blocks. The Carthaginian general Hannibal had a natural suspicion of

engineers 2000 years ago. When he crossed the Alps, the bridge-building

engineers were always sent across first on the heaviest elephants. This

practice no doubt concentrated the engineers’ minds wonderfully.

In contrast, software engineering is only around 50 years old and

although it appears to have made great strides in supporting technology,

this however is largely illusory and should be distinguished from underlying

maturity in which it has not made great strides. Indeed, it has far more in

common with the fashion industry at its present stage of development than

an engineering industry. This is evidenced by the arbitrary automation, the

regular rejection of tools in place of new untested tools and technologies

and the almost breathtaking lack of systematic measurement, one of the

primary properties of an established engineering discipline. This is

witnessed by data such as that quoted by [17] for example, whereby 85% of

all software tools, (levels of automation to support software technology),

ceased to be used after 3 months. It is quite common to find supporting

automation which resolved a particular software engineering problem to

terminate at the end of the project which funded it as if the benefits then

ceased. This would be analogous to finding a carpenter knocking nails in

with a hammer and then when the chair or whatever is finished, knocking

them in with a brick because the project has now finished. In other words,

tools to support software engineering automation have the usage pattern of

a child’s toy rather than an engineering tool which will conventionally last

an engineer in mature engineering disciplines through his or her working

lifetime with only occasional and essentially identical replacement. If a tool

solves a problem, you don’t throw it away otherwise the problem begins to

LL.M. thesis, Les Hatton, 1999 Page 41

occur again. Software engineering is uniquely and regrettably

characterised by such repetitive failure.

Problem areas in software

From the above discussion, it will be apparent that software engineering is

frequently inconsistent, produces an unusually high number of defects in

comparison with other engineering disciplines and appears to be improving

far more slowly than the speed of its adoption in all manner of consumer

and other devices. To guide us in a legal understanding, probably the two

most important deficiencies are requirements capture, (which can be used

to understand the differences between existing judgements as described in

Appendix A), and the rate at which defects appear to the user.

Software requirements capture

It has already been noted that this is quite simply an unsolved problem and

it is significant factor in software systems failing to achieve their intended

functionality. This situation is unlikely to change for a long time and is likely

to be a key factor in legal determination of disputes.

Software reliability

Defects in delivered software appear to be inevitable at the current state of

technology, a situation already remarked on in the prescient nature of the

ruling in Saphena Computing v. Allied Collection Agencies, (1985), where

the court noted the comments of an expert witness to the effect that:-

“Just as no software developer can reasonably expect a buyer to tell

him what is required without a process of feedback and

reassessment, so no buyer should expect a supplier to get his

programs right first time”.

Again as we have seen, this situation is likely to get worse rather

than better in the near future as consumer electronic software grows rapidly.

LL.M. thesis, Les Hatton, 1999 Page 42

 Fault versus failure

It is important to realise the distinction between software faults and software

failure. A software fault is a potential problem waiting to happen. They can

in general be detected simply by visually inspecting the source code

without actually running or executing it. In contrast, a failure is a departure

between actual and expected behaviour when the software is actually

running in its so-called machine-readable form. The relationship between

fault and failure is generally very complex in that failure stems from at least

one fault, but some faults never actually fail. This situation was aptly

demonstrated by [18] who demonstrated after an extensive survey of IBM’s

fault and failure database that:-

• About 33% of all faults fail less than once every 5000 execution

years

• The most common failures, i.e. those occurring less than once every

5 execution years are due to a small minority of all faults (around 1-

2%). In other words, repetitive failure is a dominant characteristic of

software systems. This is unique in engineering generally.

• Each time a fault is corrected, there is about a 15% change of

injecting a fault at least as serious as the one which is being

corrected.

It is also in principle impossible to predict whether a particular fault

will fail and if it does, the extent of the departure from expected behaviour,

for example, whether it will be catastrophic or not. The only relationships

which we appear to be able to use are statistical ones. For example, all

programming languages in common use have well-known faults, whose

presence is due essentially to the fact that the relevant programming

standards committee simply could not agree on what happens in every

eventuality and therefore simply allowed anything to happen. If this

frightens the legal reader, welcome to the club. These faults occur again

and again and fail with some frequency. We can even measure the

LL.M. thesis, Les Hatton, 1999 Page 43

dependence of commercially released software on these known faults as

can be seen in Figures 1.11 and 1.12 below which show these

dependencies for the C and Fortran 77 programming languages

respectively6. These are not toy languages, indeed C is very widely used in

everything from operating systems to cars and medical scanning devices

and Fortran 77 has been the de facto standard language for nuclear reactor

control for a number of years and is only recently being superseded.

The reader may note from Figure 1.12 particularly, the alarming

differences that can occur even within the same industry. For example, the

nuclear engineering industry is responsible for the worst code ever

measured for this effect, (rising to 140 statically detectable faults per KLOC

and indicated with an arrow on the Figure), and the very best, (0 statically

detectable faults per KLOC), for comparable levels of integrity, which to a

legal reader would be equated to a risible relationship between duty of care

and standard of care. This enormous difference in the capabilities of

engineers working in the same area has long been known in terms of

productivity. It is a natural human phenomenon and occurs in other

disciplines also but in those disciplines the difference is largely suppressed

by effective checks and controls resulting from many years of experience.

Software engineering has not yet attained this level of maturity and so

individual engineer differences often dominate, obscuring other factors and

making progress difficult.

6 The reader should also note that the apparent repetition of the same category in both diagrams, for example
the Utilities category in Fig 1.11, is due to Microsoft Excel’s unfortunate predilection for missing out words
arbitrarily. In my data, the words Water Utilities, Gas Utilities and Electricity Utilities appear. Excel took
offence to these words and excised them from the graph.

LL.M. thesis, Les Hatton, 1999 Page 44

W
e

ig
h

te
d

fa

u
lt

s
p

e
r

1
0

0
0

lin

e
s.

0

5

1 0

1 5

2 0

2 5

G
ra

ph
ic

s

G
en

er
al

E
le

c-
e

n
g

D
es

ig
n

S
ys

te
m

C
o

n
tr

o
l

D
at

ab
as

e

G
ra

ph
ic

s

P
a

rs
in

g

P
a

rs
in

g

In
su

ra
n

ce

U
ti

li
ti

e
s

U
ti

li
ti

e
s

U
ti

li
ti

e
s

C
o

n
tr

o
l

C
om

m
s

C
om

m
s

Figure 1.11: The distribution of statically detectable faults per KLOC (1000 lines of code) in
commercially released applications around the world measured between 1992 and the
present day written in the language C as measured by [19]. The codes were generated in
the last twenty years and come from many kinds of applications and industries around the
world. Several million lines are represented in these statistics.

W
e

ig
h

te
d

fa

u
lt

s
p

e
r

1
0

0
0

lin

e
s.

0

5

1 0

1 5

2 0

2 5

ge
ne

ra
l

e
lc

-e
n

g

E
a

rt
h

S
ci

p
a

rs
in

g

C
ad

C
am

C
he

m
M

od

E
a

rt
h

S
ci

e
lc

-e
n

g

fl
d

-e
n

g

m
ch

-e
n

g

m
ch

-e
n

g

n
u

c-
e

n
g

n
u

c-
e

n
g

o
p

e
r-

rs

C
ad

C
am

th
e

-p
h

ys

G
eo

de
sy

A
er

os
pa

ce

ge
ne

ra
l

LL.M. thesis, Les Hatton, 1999 Page 45

Figure 1.12. A study similar to that shown in Figure 1.11 but this time for the language
Fortran 77. A very similar pattern of dependence on fundamentally undefined behaviour can
be seen.

The reason that all these potential faults sit inside commercially

released code ticking way like the time-bombs they are is that there is

nothing in standard commercial software development processes to prevent

them appearing, and yet we know how to prevent them and have known for

a long time. Statistically, we also know that around 40% of these will

develop into failures in typical software systems during the lifetime of the

software products. This is simply collective culpable stupidity and is

impossible to defend on any reasonable grounds.

 Quantifying fault and failure

The reader should note the following, [20], [13], [21]:-

If all faults, major or minor, are counted, software which exhibits less than

one fault per 1000 lines of source code7 during its life-cycle is just about as

good as has ever been delivered and very few software development

groups achieve this systematically. Note that a software life-cycle could be

anything up to tens of years. Software which exhibits between 3 and 6

faults per 1000 lines of code during its life-cycle would be considered

reasonable quality commercial code. Furthermore, it is not uncommon for

software systems to exhibit >10 faults per 1000 lines of code during their

life-cycle and some studies show up to 30 faults per 1000 lines of code.

Put simply, this means that if a software development group delivers

a million line system for some critical application, (a not uncommon

scenario), then if they have done a really good job, the software will only

contain around a 1000 faults. This is not a particularly happy prospect to

contemplate. Now, it is also known, (e.g. [22]), that only perhaps 5-10% of

all faults in a software system have a major effect on the system behaviour,

7 It is common for software engineers to measure overall reliability using defect density, i.e. the number of
defects exhibited per 1000 lines of source code during some defined part of the life-cycle, rather than the
more conventional mean time between failures, or probability of failure on demand used by hardware
engineers.

LL.M. thesis, Les Hatton, 1999 Page 46

which means in plain English that such a system will have around 50-100

faults which are likely to appear as serious failures during the life-cycle of

the product. In other words, a million line state of the art system will exhibit

50-100 serious failures in its life-cycle. !

From a legal point of view, there is also a significant difficulty in

ascribing failures unequivocally to faults in software. For example, it is fairly

typical to find that around 1/3 of all failures could not successfully be

associated with any fault as witnessed by Figure 1.13, taken from [22].

These appear as the category ‘unassigned’, in the sense that although the

system failed, the failure could not be ascribed to any particular fault. This

problem is usually caused by a combination of complex systems and

inadequate diagnostics. A wonderful example of this is quoted by [7]

whereby an error originating in a trimmer on an Airbus rattled round the

computer network and eventually manifested itself as a completely spurious

‘Smoke in the Lavatory’ message. Given this tenuous relationship between

cause and effect in such computer systems, we should not be surprised that

some categories of failure are simply ‘unassigned’ ! One further comment

is worth making about Fig 1.13. There are no standard categories for

describing failure. In this case, documentation has been split up as a

separate category and the words ‘major’, ‘medium’ and ‘minor’ reserved for

actual system behaviour discrepancies.

LL.M. thesis, Les Hatton, 1999 Page 47

P
e

rc
e

n
t

o
f

p
o

st
-d

e
liv

e
ry

fa

ilu
re

s

0

5

1 0

1 5

2 0

2 5

3 0

3 5

M
a

jo
r

M
ed

iu
m

M
in

o
r

T
es

tin
g

D
oc

um
en

ta
tio

n

U
na

ss
ig

ne
d

Figure 1.13. This shows typical categories of failures in an air-traffic control system. Note that
around a 1/3 of these could not be assigned to any particular category.

In other words, in a court, if an expert witness were asked to state

categorically whether a particular failure was a software failure or a

hardware failure or perhaps some other system interaction, there is a

significant chance that they could not. This is made worse by the

observation that many programming languages contain features which are

not portable between different compilers for the same language, [23]. In

other words, precisely the same source code could be moved between

different compilers and the results could be legitimately different because

programming languages are the product of committees, and as a result,

generally contain significant amounts of behaviour the committee could not

agree upon8. This is known as the problem of software portability and

8 There are 197 such features in the programming language C, a language widely used in embedded systems in
consumer products. This is quite normal. In addition, in this language, in the period 1990-1997, a further
119 defects were found in the programming language standards document itself, as issued by the ISO, (the
International Standards Organisation). This also is quite normal.

LL.M. thesis, Les Hatton, 1999 Page 48

achieving such portability, whereby the same source code has precisely the

same behaviour on different machines can in practice be formidably

difficult, particularly when modern and highly complex languages such as

C++ are used. Only one language has ever achieved exceptional

portability relatively easily and that is Java, and even this is threatened by

the current U.S. law suite between its designers, Sun Microsystems and

Microsoft who are allegedly changing the specification such that Java

programs developed on Microsoft systems will only run on Microsoft

systems. This is evidenced in the Microsoft product Visual J++ which has

apparently built-in access to MFC, the Microsoft Foundation Classes on

which Microsoft systems are built. The problem of course is that if you use

such access, the resulting software can only run on such systems. This is

completely against the entire spirit of Java.

Inadequate process control

Enough is already known about the process of producing software to

identify certain technologies which if absent, greatly increase the risk of a

software project failing. This should help cast light on what would be

considered reasonable care in software development, a matter to be

discussed later. The four primary required technologies are:-

 Change and Configuration Control

Change and configuration control is very simple. In essence, it describes

the ability to trace every requirement to the components which had to be

modified or added whilst disallowing the notion of any change without

requirement. In addition, it allows the developer to re-create the system at

any point in its history, especially at key release points and provides a

complete inventory of the necessary components and how they must be

assembled together to create the full system. Although this can be carried

out manually, all but the most trivial systems would overwhelm the

developer and modern systems can consist of many thousands of

components and millions of lines of code so automation is essential.

LL.M. thesis, Les Hatton, 1999 Page 49

Fortunately, such automation is widely available and of high quality. Less

fortunately, only the minority of companies employ it.

 Project Estimation and Planning

This would be immediately familiar to a project engineer from another

engineering discipline. It can take many forms such as PERT or GANT

charts but in essence is a complete list of all tasks which need to be carried

out with their appropriate resources, time deadlines and most importantly,

their interactions and dependencies. Many excellent software tools allow

this to be fully supported with automation and it is known to be a very

significant factor in a successful project. Again, its use is relatively rare in

the “Ready, Shoot, Aim” software development industry.

 Project Management and Tracking

A project plan is of course of no use unless progress against it is regularly

monitored. Experience suggests that if a project is broken down into tasks

taking no longer than about 5 days and if progress is monitored weekly, it is

very common for software projects to complete successfully within about

10% of their schedule. In addition, risk is greatly reduced because if

problems arise, they are identified early, allowing backup procedures to be

used. In contrast the absence of project management and tracking is

responsible for some of the enormous project over-runs for which software

engineering is justifiably infamous9.

A very useful and very simple piece of data often missing from

software development projects is the difference between the planned

delivery date of the next milestone and the current date plotted against the

current date. A simple graph of this can tell even the most IT resistant

senior manager exactly how a project is progressing. Some examples are

shown in Figure 1.14.

9 Even when project management is present and in use in mature disciplines such as civil engineering, over-
runs still occur as witnessed by Concorde, the Channel Tunnel and now the Millennium Dome as well as
countless others.

LL.M. thesis, Les Hatton, 1999 Page 50

A B

C D

Figure 1.14. Examples of plotting the difference between planned delivery date of the next
milestone and current date (vertical axis), against the current date, (horizontal axis). When the
line hits the horizontal axis the milestone is complete.

(A) shows the ideal case of a project progressing steadily and on time

without problems. This is the ideal case and is a result of careful

requirements capture, and regular, fastidious project tracking against a

well-defined plan. It happens but requires great experience and

pragmatism. (B) is a project experiencing some difficulties but they are

minor problems in general and the overall trend is downward. The project

will be late but should be delivered essentially intact. (C) is the classic

pattern of a project whose requirements are never initially specified. The

project is simply going nowhere. These are surprisingly common, (c.f. for

example [14]) and tend to be characterised by an unwillingness by anybody

involved to recognise this simple fact. A graph like this makes it blindingly

obvious from an early stage so that corrective action can be taken. (D) is an

example of creeping ‘feature-itis’. The users are presented with a system

and then begin increasingly to request new features. The project begins to

spiral out of control. These too are unpleasantly frequent and are a

symptom of the popular misconception that software is easy to change.

Again, they are blindingly obvious and corrective action can be taken early

LL.M. thesis, Les Hatton, 1999 Page 51

rather than late into the project when huge amounts of money will have

been wasted.

 Software Quality Assurance

Most readers would think it unthinkable in this day and age that software

could be released to the general public with little or nothing in the way of

quality assurance given the massive strides in this area made by the

various manufacturing industries in the last few years. However, again,

many software companies are deficient in this area with software quality

assurance functions having little power and very little agreement about

what actually constituted software quality assurance.

The absence of any these technologies leads to a process state

formally known as chaotic, (the 1st level of the CMM model discussed in

more detail in Chapter 3). According to early studies done in the United

States, [24], 85% of all companies were in this state. A disturbingly large

number of companies operate with two or more missing. From a legal point

of view this is important, as it is now relatively easy to identify poor software

development processes in a highly objective manner in a way in which

expert witnesses would find considerable grounds for agreement.

The deliverables

This problem has become much more acute in recent years. It is

convenient to think in terms of a software producer producing a piece of

software, compiling it into an executable and delivering it to the customer.

This has always been slightly problematic in the sense that the executable

will contain not only software written by the producer but also system

software written by other parties. This is indicated graphically by Figure

1.15

LL.M. thesis, Les Hatton, 1999 Page 52

Licensor-
created

components

System
software

components

Other
supplier’s

components

Delivered executable

Figure 1.15: The various components which can make up the delivered software
executable.

In other words, all the issues of contract, liability and so on

considered in this thesis are complicated by the fact that determining where

a failure has taken place and more to the point, who is responsible can be

very difficult indeed. Of course, to the end-user, the result is a single

executable but there may be all kinds of collateral contracts in existence

between the licensor, the producers of the system software and the

suppliers of other components. Just to flesh this out a little, if a user

purchases a piece of contact management software for example, this will

contain all the code pertaining to contact management, but will also contain

functionality supplied in the system software, for example, functions

returning the system clock time, and is very likely to contain yet another

party’s database components as contact management software relies

heavily on databases and these are usually supplied by specialist

manufacturers of database management software. It may also depend on

yet another producer’s graphical user interface (GUI) components.

In recent times, this has become even more complex with the growth

of the shared library . Historically, executable software as shown in

Figure 1.15 was complete, self-contained and self-consistent. In theory, it

could be put on any machine compatible with the way it was made and run

on its own. The price for this flexibility was that the executable could be

LL.M. thesis, Les Hatton, 1999 Page 53

very large in machine terms. For example, it might have taken up a

significant percentage of the available random-access memory (RAM) in the

machine, into which all executables must be loaded (i.e. copied) before

they can be run. To circumvent this problem, the practice of shared libraries

has arisen. Here, parts of the executable for example the system

components or another supplier’s components, can be split off so that they

can be shared between different executables, so that only the licensor’s

components are present in the delivered executable. The resulting

executable program might take up only 200,000 bytes rather than

2,000,000 bytes, a space saving of some 90%. The other 1,800,000 are still

necessary but are only accessed when needed and are shared by any

other executable that might be running at the same time10.

The executable will only run if the split off components are separately

present on the licensee’s machine. In practice, this should be identical from

the licensee’s perspective who is unaware that all this is happening.

However, it must be remembered that shared libraries also evolve with time,

so it is perfectly possible for a licensor to test their own software using

version A of the shared libraries and deliver it to the licensee who has

version B of the shared libraries. The result can be chaos with

responsibility very difficult to apportion. The situation is shown graphically

in Figure 1.16

10 On a multi-tasking machine, many such executables might be running effectively simultaneously.
Originally PCs were single-tasking machines with only one executable runnable at any one time. However,
even PCs have some elements of multi-tasking present, for example, one document can be printed whilst
another is still being worked on from within a word-processor.

LL.M. thesis, Les Hatton, 1999 Page 54

Licensor-
created

components

System
software
version B

Other
supplier’s
version Y

Executable on licensee’s system

Licensor-
created

components

System
software
version A

Other
supplier’s
version X

Executable on licensor’s system

Only this part supplied
by licensor

Figure 1.16: Illustrating the concept of shared libraries whereby the licensee’s running
executable may not be the same as the version the licensor tested on their own system.

The author has had so many problems with shared libraries over the

years that he now tends to avoid them even at the expense of producing a

much bigger executable than would be the case with shared libraries.

Common misconceptions about software

There are many misconceptions about software, a large percentage of

which are regrettably held by senior management in companies developing

software. They should know better and this continues to exacerbate an

already difficult technical problem by surrounding it in managerial

problems. Some of the worst misconceptions follow:-

a) Software is easy to change.

This is correct on a trivial level, however, it is NOT easy to change

correctly. Enhancements to a system suggested after the basic

design has taken place are frequently difficult if not impossible to

incorporate. There is simply too much evidence against this, for

example as provided by [18], who showed that in effecting corrective

change (i.e. fixing defects) in big systems, there was about a 15%

change of introducing a defect at least as large as the one which was

being corrected. This occurs because it can be very difficult indeed

LL.M. thesis, Les Hatton, 1999 Page 55

for a programmer to predict all the effects a change might have on a

big software system. These are known as side-effects or spoilage.

b) External deadlines can be imposed successfully.

Most software projects are late and some are very late, [25]. Analysis

of this shows that it tends to occur because deadlines are set by

management without any attempt to estimate or plan a project and

this is one of the most basic failures in the well-known Carnegie-

Mellon CMM software process model, [24]. A recent fascinating

example of this management idiosyncrasy at work could be seen in

an article in the Times11 in December 1997 whereby a large number

of companies were interviewed and asked when they would finish

their Year 2000 conversions. Every company named the same

deadline of November 1998, irrespective of what stage they were at,

(some had not started). This was obviously the politically acceptable

deadline for management to set. As many of these companies will

find out, it has little if any relationship with reality. The effect is clearly

visible in Salvage Association v. CAP Financial Services Ltd. (1993)

for example.

c) Adding people to a project can be used to help bring in a late project

on time.

This was profoundly dismissed long ago by [26], who showed that

adding people to a late project simply made it later. In addition other

software process models such as the COCOMO model [3], which

resulted from real life experiences of defence software projects show

a minimum in the duration of a software project. As the number of

engineers increases, the delivery time becomes closer up to a

certain relatively modest number, after which the delivery time begins

to recede again.

11 This was one in a series on the Millennium produced in the middle of December.

LL.M. thesis, Les Hatton, 1999 Page 56

d) Defect-free software of any significant size can be delivered.

From the figures given earlier, this is clearly an absurd notion. The

very best software will still exhibit around 1 defect per 1000 lines of

source code during its life-cycle. Less robust systems could be 30-

50 times worse than this.

In preparation for the next chapter, the key points of this chapter are

here summarised.

• Software fails frequently. When it does fail, it frequently proves

impossible to fix

• Many software failures are entirely avoidable, but a significant

number remain unavoidable in spite of our best efforts

• Software failure is entirely unpredictable. A given fault can have no

effect or conversely an absolutely catastrophic effect on the system

behaviour. In this respect, it is truly chaotic

• Software development is immature and little progress has been

made in making it more reliable in the last 20-30 years

• New bespoke projects have a very low success rate

• It is debatable whether software is tangible or not

• Expert opinion is likely to differ very considerably.

Clearly, software presents some interesting legal challenges, but

they must be addressed to avoid the possibility of throwing out the baby

with the bathwater as outlined at the beginning of this chapter.

In the next chapter, various legal issues will be discussed using a

standard legal approach but with commentary on those aspects relevant to

software engineering given the nature of the beast as summarised above

LL.M. thesis, Les Hatton, 1999 Page 57

Chapter 2: The nature of legal liability for software

In the previous chapter, a general introduction to software, its nature, its

development and most importantly its problems has been given from a

computer scientist’s point of view. In this chapter, software engineering will

be described again but this time from a typical modern legal point of view.

This process should be considered as essentially territorial. When trying to

bridge the chasm between two disparate subjects, there is usually no

natural way to proceed. In the absence of one, all which will be done here

is to cover the ground covered in standard legal texts and add

interpretations, possible sources of confusion and other commentary from a

computer scientist’s point of view. For a very detailed exposition of

information technology law, the reader is referred to [27] and [28].

The interpretations relevant to software engineering will appear with

a left border thus:-

A software engineering interpretation.

In a later chapter, particular aspects will be developed further

crossing the divide between the computer science aspect and the legal

aspect. As will be seen from these observations, natural links of consistent

interpretation emerge.

We have already seen in Chapter 1 that software is very likely to fail

in its life-time, that such failure is likely to lead to loss and that at least some

of this failure is unavoidable. We must therefore ask what are the legal

consequences of such failure ?

Important statutes covering software delivery and production

English law and indeed much of US law is based around common law

unlike the rest of Europe which is essentially based around civil law.

Although there is considerable convergence by means of statutes, which

are essentially tried and trusty recipes for dealing with particular legal

situations, these recipes have considerable shortcomings when attempting

LL.M. thesis, Les Hatton, 1999 Page 58

to deal with actions arising as a result of software. One particular issue is

for example, whether software should be classified as goods or as a

service. So far the courts have essentially (and very successfully) ducked

this issue and have resolved cases effectively on contractual issues

according to basic statutes and the application of common law principles.

However, this somewhat uncomfortable relationship will need to be clarified

in the future as litigation increases, (perhaps fuelled by the coming so-

called Year 2000 problem), and the scope and range of cases which reach

the courts increases.

The following statutes are of direct relevance and will be referred to

frequently:-

• Sale of Goods Act (1979), SGA79

• Supply of Goods and Services Act (1982), SGSA82

• Sale and Supply of Goods Act (1994), SSGA94

• Unfair Contract Terms Act (1977), UCTA77

• Consumer Protection Act (1987), CPA87

It should be noted that to a certain extent, SGA79 is largely replaced

by SSGA94, for example in the area of implied terms except where defects

in software before 1994 take a long time to materialise, a not unlikely

scenario given the discussion in Chapter 1. SGA79 is also still relevant

with respect to fitness for purpose.

The nature of liability

In English law, software-related liability can arise from three sources as

shown in Figure 2.1. In general, only civil liability will be considered here,

although case law from criminal proceedings will be used later to help

clarify the nature of software in the eyes of the law.

LL.M. thesis, Les Hatton, 1999 Page 59

Contract Law Tort or delict Product Liability

Sources of law affecting software

Figure 2.1: The three principle sources of law affecting the production and distribution of
software.

In essence then, civil liability arises either from contractual

arrangements or from a non-contract basis. We can divide this latter

category into liability arising under the general law of Tort, and liability

arising under the Consumer Protection Act or Product Liability. These

sources will be considered in order

Liability in contract

To date, this is the only significant area of liability which has been tested in

the courts as illustrated by the two influential cases discussed in the

Appendix. The nature of contractual liability in the case of software

depends on whether a contract is interpreted under SGA79/ SSGA94 or

SGSA82, the goods versus services issue discussed later in this thesis in

some considerable detail, where it will be concluded that the situation is

sufficiently poorly explored at the moment that to avoid problems it is in the

best interests of both supplier and buyer to ensure a suitably robust contract

using the techniques described in the Chapter 4 below.

The approach taken is represented in the form of the following

graph12, Figure 2.2:-

12 A suggestion I owe to Professor Ian Lloyd with thanks.

LL.M. thesis, Les Hatton, 1999 Page 60

Is the contract a
consumer contract ?

Yes No

Is the contract for:

Goods Services

SSGA
94

SGSA
82

UCTA77

Is there a specific
arrangement ?

Yes No

Is the contract for:

Goods Services

SSGA
94

SGSA
82

UCTA77

Figure 2.2 A structure for the discussion of contractual liability in the text.

We can transform this structure into the following:-

 Non-consumer contract with a specific arrangement

In this case, the contract is subject only to the provisions of UCTA77,

although s.4 of SSGA94 added further provisions for the supply of goods by

inserting the following after s. 15 of SGA79:

“(15A) (1) Where in the case of a contract of sale:-

LL.M. thesis, Les Hatton, 1999 Page 61

(a) the buyer would, apart from this subsection, have the right to

reject goods by reason of a breach on the part of the seller of a term

implied by s. 13, 14 or 15 above, but

(b) the breach is so slight that it would be unreasonable for him to

reject them,

then, if the buyer does not deal as a consumer, the breach is not to

be treated as a breach of condition but may be treated as a breach of

warranty.”

In general, where one deals not as a consumer, the law takes the

view that whatever contract one signs is up to the two parties although via

UCTA77, it will take into account various factors including the relative

bargaining strengths and availability of insurance. In addition, certain

implied terms such as title and description cannot be excluded.

An additional word on insurance cover seems appropriate. This area

was discussed in detail in Salvage Association v. CAP Financial Services

Ltd. (1990) and was indeed “a major point of contention throughout the

trial”. As ever, hindsight seems so much clearer. The defendants, argued

that insurance cover was available to the plaintiff at a relatively reasonable

rate of 3-4% of the cover required. However, as became clear, this only

covered against possible delay, rather than complete failure to produce a

workable system. When pressed on the possibility of getting cover against

this latter eventuality , one of the witnesses said:-

“Well, you can insure anything and you can get cover from Lloyds

to ensure any risk, provided you are willing to pay a high enough

premium” (or words to that effect).

Regrettably, complete failure is the norm in software systems as

evidenced by the data presented in Chapter 1, so in effect, the kind of

insurance cover contemplated by the courts is effectively precluded.

LL.M. thesis, Les Hatton, 1999 Page 62

 Any other contract - the consumer standpoint

For all other cases, the viewpoint is as if from that of the consumer. The

involvement of the consumer is a relatively recent phenomenon and this

exposes producers and suppliers to a more extensive legal regime. In this

case, we must first ask if the contract is one for goods or services. If it is a

contract for goods, it falls under the auspices of SGA79/SSGA94. On the

other hand if the contract is one for services, it falls under the auspices of

SGSA82.

If it is one for goods, the essential difference between SGA79 and SSGA94

from the point of view of software is the definition of what is acceptable and

when it is accepted. SGA79 contained an implicit term that goods would be

of ‘merchantable quality’. This definition changed in SSGA94, (s.1) to the

following:-

“(2) Where the seller sells goods in the course of a business, there is

an implied term that the goods supplied under the contract are of

satisfactory quality.

(2A) For the purposes of this Act, goods are satisfactory quality if

they meet the standard that a reasonable person would regard as

satisfactory, taking account of any description of the goods, the price

(if relevant) and all the other relevant circumstances.

(2B) For the purposes of this Act, the quality of goods includes their

state and condition and the following (among others) are i n

appropriate cases aspects of the quality of goods-\

(a) fitness for all the purposes for which goods of the kind i n

question are commonly supplied,

(b) appearance and finish,

(c) freedom from minor defects,

(d) safety, and

LL.M. thesis, Les Hatton, 1999 Page 63

(e) durability.

(2C) The term implied by subsection (2) above does not extend to

any matter making the quality of goods unsatisfactory -

(a) which is specifically drawn to the buyer’s attention before

the contract is made,

(b) where the buyer examines the goods before the contract is

made, which that examination ought to reveal, or

(c) in the case of a contract for sale by sample, which would

have been apparent on a reasonable examination of the

sample.”

SSGA94 s.2 also has this to say about acceptance:

“(4) The buyer is also deemed to have accepted the goods when

after the lapse of a reasonable time he retains the goods without

intimating to the seller that he has rejected them.

(5) The questions that are material in determining for the purposes

of subsection (4) above whether a reasonable time has elapsed

include whether the buyer has had a reasonable opportunity of

examining the goods for the purpose mentioned in subsection (2.2)

above.”

In general, SGA79 will be used in the discussion that follows except

where the above differences are relevant. (It can be noted parenthetically

that so far most of the significant cases have arisen under the regime of

SGA79 and in so far as any statutory guidance was used, that contained in

SGA79 would have been relevant).

As was discussed in Chapter 1, the appearance of large amounts of

software in basic consumer products such as washing machines,

answering machines, televisions, cars and so on, mean that the consumer

will be directly in the firing line of dubious software quality. Here various

LL.M. thesis, Les Hatton, 1999 Page 64

relevant aspects of consumer law will be covered in the same order as

discussed by a typical widely-used legal text, in this case, [29].

Classification of consumer contracts

Contracts for the Sale of Goods

SGA79 regulates only a contract for the sale (but not hire) of goods (and not

services). Such a contract is defined as ‘one by which the seller transfers or

agrees to transfer the property in goods to the buyer for a money

consideration, called the price’. The price must contain a money element to

fall within the scope of SGA79. If the price is not fixed by previous dealings

or the contract, it must be reasonable.

Whether or not software is considered as goods is a very simple question

leading to a very complex answer which will be addressed later.

Contracts for the Supply of Services

Contracts for the supply of services (work and materials) are regulated by

Part II of SGSA82, (Part I considers transactions for the hire of goods which

will not be discussed further here, as software is not normally hired13).

Section 12 defines a ‘contract for the supply of a service’ as ‘a contract

under which a person (the supplier) agrees to carry out a service’.

Classification becomes difficult when a contract supplies a mixture of goods

and services. The test used for classifying a transaction is: What is the

essence of the transaction, the production of something to be sold (sale of

goods) or the expenditure of skill and labour (work and materials) ?

The nature of the difficulties of classification from a software point of view is

well-illustrated by the fact that painting a portrait, repairing a car and roofing

a house have all been held to be supplies of services, whereas a meal in a

restaurant is held to be a sale of goods. The production of software

involves an intense intellectual activity such that the cost of the materials

13 Actually, this is a non-trivial point. Although on the face of it, software is ‘returned’ if a customer ceases
to comply with the terms, in practice, contracts generally require all copies of the software including

LL.M. thesis, Les Hatton, 1999 Page 65

supplied with the software is absolutely negligible compared with the

intellectual cost of developing the software. Furthermore, software is

unique in that once written, it can be copied for a negligible cost - there is

no further expenditure of work. In fact, in the increasingly common case of

software downloaded from the Internet, there are typically no materials

supplied either. The software is downloaded onto materials which are

generally already the property of the person downloading the software. The

downloaded material will normally contain the documentation also, which

as often as not is intended to be read not by printing the material but is in

HTML format (Hypertext Markup Language) in order to be read by a HTML

browser, (a piece of software which can read HTML and convert it into

something which can be read by a human, although HTML can actually be

read unaided with some difficulty).

Analogies with the distribution of music will be analysed later but it would

appear that downloaded software contains neither work nor materials which

would seem to lead to distinct difficulties in so far as SGSA82 is concerned.

On the face of it, it should be related to work, but any number of copies can

be downloaded without any further expenditure of effort on behalf of the

developer, so that each individual copy does not contain any work.

Ownership and risk

Ownership and risk is directly associated with the sale of goods as defined

and governed by SGA79. In this sense, risk is the risk of loss. In English

law, the transfer of the risk of loss from trader to consumer is intimately

associated with the transfer of ownership. The time at which this takes

place is therefore of considerable importance.

Although the rules for transfer of ownership are typically very

complex, one of the principle requirements is that goods must be

ascertained. In essence this means that goods must be identified in order

to transfer ownership. For example, ‘we will sell you one of the televisions

backups to be deleted in this eventuality. In other words, the copies are destroyed even though the

LL.M. thesis, Les Hatton, 1999 Page 66

in this shop’ does not ascertain goods. Section 18, Rule 1 of SGA79 states

that in an unconditional contract for the sale of specific (i.e. ascertained)

goods in a deliverable state, property passes when the contract is made

even though payment and/or delivery may be delayed. In modern times, it

is takes little for courts to construe that property passes only on delivery or

payment.

The point at which software is delivered is an important issue which will be

returned to later. However, it can be noted that software is never really

ascertained. There is no specific copy which is ‘sold’ as it could be trivially

copied and generally has no identifying marks, (even the licence number of

licensed software is not attached to the copy but is usually part of a

separate licensing mechanism). Bit-wise copies, (i.e. a faithful copy of

every binary 1 or 0), are absolutely indistinguishable and could be

produced many times a second with no user input for a typical piece of

software.

To expand a little on licensing mechanisms, their distinction from the

licensed software is emphasized by the fact that such mechanisms can be

bought from third-party manufacturers. They essentially work as part of a

client/server architecture. The licensed product starts up and

communicates with a completely separate stand-alone server embodying

the licensing mechanism. The licensing mechanism determines from some

kind of database whether the request should be honoured and either

denies or accedes to the request. The licensed product then acts on this

command by either continuing or stopping. Some licensing mechanisms

service several different licensed products simultaneously. Licensing

mechanisms are generally as distinct from the products they licence as is

the operating system which hosts both of them.

Pre-contractual statements and contractual terms

documentation might be returned. This is unprecedented in the hiring of goods.

LL.M. thesis, Les Hatton, 1999 Page 67

Pre-contractual statements are statements made during negotiation prior to

a contract. They are of particular importance in software because in

general, nobody including its designers can describe the actual behaviour

in precise detail. In such circumstances, misrepresentation of some form or

another seems almost inevitable.

Pre-contractual statements take four forms:-

Trader’s puff

Certain statements made by a trader are regarded as mere’ puffs’ as in

‘whiter than white’ or ‘the greatest product in the universe’ for example.

However, if there is any intention to create legal consequences, the courts

will seek to give legal effect to such statements.

Representations

A misrepresentation is a representation which is false. In effect. it is a false

statement of fact which induces the other party to enter into a contract. A

half-truth can be a misrepresentation and indeed silence, where there is a

duty to disclose such as in a contract for insurance. Note that there is no

duty on the consumer to verify the truth of a representation - it is enough that

the statement was believed even if its falsehood could have been easily

verified, (Redgrave v. Hurd (1881) CA).

There are three kinds of representation:- fraudulent, negligent and innocent.

Fraudulent misrepresentation whereby statements are deliberately made in

the knowledge that they are false or without caring whether they are true or

false are likely to be infrequent in the sale of software. Fraud is also very

difficult to prove in practice. However, negligent misrepresentation whereby

false statements of fact are made negligently seem to be much more likely

as demonstrated by Mackenzie Patten v. British Olivetti (1984) where the

defendant supplied a system based on a salesman’s promises which

turned out to be false and the system was completely unusuable as a result.

The court inferred that a collateral contract was in place and that the

defendant was in breach and liable in damages. Given that the average

LL.M. thesis, Les Hatton, 1999 Page 68

software developer cannot even predict how his or her piece of software will

behave in a wide set of circumstances, it is to be expected that the supplier

of piece of a COTS software will be particularly disadvantaged. The state of

software engineering is sufficiently bad that almost any statement that they

might make could be found wanting and each is generally made with the

specific intention of enticing the consumer to buy a software product.

Collateral warranties

It is often difficult in practice to detect when a representation crosses the line

into a binding promise. If it does however, it becomes a collateral warranty

It is worthwhile to ask when a pre-contractual statement amounts to

more than a representation and be considered as a binding contractual

stipulation. The courts will apply the test that it is not simply what the parties

actually intended, but is what the intelligent bystander would infer as to the

parties’ intention from their words or contact. The court will readily infer

such an intention where the trader states a fact which is or should be within

their own sphere of knowledge and of which the consumer is ignorant,

Oscar Chess Ltd. v Williams (1957), or where the trader makes a promise

about something which is or should be within their own control, Dick

Bentley Productions Ltd. v. Harold Smith (Motors) Ltd. (1965). If it is a

representation, then if the supplier can prove that he believed on

reasonable grounds that his statement was true, he will not be liable in

damages under s. 2(1) of he 1967 Misrepresentation Act. However, if his

statement amounts to a collateral warranty, the supplier’s honest and

reasonably held belief will be no defence against an action for damages for

breach of warranty.

This is deep water indeed. The author has personally returned products

(for example, the route-planner Autoroute) which the supplier’s literature

and the supplier claimed would solve his route-planning problems. He

subsequently discovered on using the software that there were so many

defects in the software that it was positively misleading. The original

LL.M. thesis, Les Hatton, 1999 Page 69

software producer was unable to correct these defects in a reasonable time

in spite of issuing numerous releases and the author simply accepted his

money back. A more assiduous user might well have got lost on several

occasions. There is of course an obvious danger here that a broadly

beneficial product will inevitably contain defects. The consumer must as

always weigh the advantages against the disadvantages given that COTS

software is often of rather poorer quality than the reasonable user might

expect after experience with other consumer items.

Contractual terms

In contrast to the above, contractual terms take the forms:-

Conditions

A condition is a vital or major term in a contract, a breach of which allows

the innocent party to consider the contract at an end. Note however that in

Sale of Goods cases, the consumer’s right to reject the goods and reclaim

his money is subject to s. 11(4) of SGA79, which states that ‘where a

contract of sale is not severable and the buyer has accepted the goods or

part of them’, the buyer can only claim breach of condition by the seller and

he cannot reject the goods. Note also that SSGA94, (s.2) clarified the

notion of acceptance in the case of contracts dealing as a consumer

whereby the right to examine goods could not be waived or otherwise lost.

The key word here is of course acceptance. Many COTS software suppliers

invite the user to fill in a registration form, nominally to ‘receive notification

of future updates’, although its main apparent intention seems to be to

secure acceptance by the back door. Acceptance will be discussed in

detail later.

Warranties

According to SGA79, a warranty is ‘collateral to the main purpose’ of a

contract and is of minor importance. Breach of a warranty entitles the

innocent party to damages only.

LL.M. thesis, Les Hatton, 1999 Page 70

Intermediate stipulations

An intermediate stipulation is neither a warranty nor a condition but allows

an innocent party to claim damages on breach and also to terminate a

contract if the breach were sufficiently serious.

Implied terms

Statutory terms within SGA79

A key step forward for consumer rights was the ‘statutory’ or ‘inalienable’

rights enshrined in s. 12-15 of SGA79. In essence, these are:-

Title

The consumer is entitled to freedom from undisclosed encumbrances (i.e. a

lien) and quiet possession of the goods.

Description

The goods including any samples must correspond with their description.

In any ‘sale by description’, the description does not have to be a complete

description of the product, but must materially fit the goods concerned. This

would apply to any claim to compatibility. To describe a piece of software

as compatible is to make an easily testable statement as to its behaviour on

a particular platform. Any unexpected and undesirable behaviour would be

considered to render it incompatible. An action based on misdescription is

likely to be more successful for the consumer than one based on

misrepresentation as it falls under SGA79 and the supplier cannot rely on a

‘honest and reasonably held belief’, as this is essentially a contractual term.

Merchantable / Satisfactory quality

This is a fundamental principle in English civil consumer law. It was

originally enshrined in SGA79 s. 14(2) as:

“Where the seller sells goods in the course of a business, there is an

implied condition that the goods supplied under the contract are of

merchantable quality, except that there is no such condition:

LL.M. thesis, Les Hatton, 1999 Page 71

a) regarding defects drawn specifically to the buyer’s attention

before the contract is made, or

b) if the buyer examines the goods before the contract is made,

as regards ‘defects which that examination ought to reveal’.

This was subsequently modified by SSGA94 as described earlier in this

section. In the above, the use of the word ‘defect’ was modified to ‘any

matter making the quality of goods unsatisfactory’ and ‘merchantable’ was

changed to ‘satisfactory’.

a) above appears to offer a blanket way of escaping responsibility for the

seller of software. For example, an unusually honest seller might say, “oh

by the way, this product has numerous bugs and crashes frequently,

although generally performs the function expected of it provided you save

everything every 5 minutes.” However, the use of the word ‘specifically’

should be noted. It is generally agreed that generic phrases such as

‘damaged’ or presumably, ‘full of bugs’ would not suffice. Rather specific

defects should be pointed out. This would clearly be impossible for most

software products even if the seller knew they were there as re-creating the

conditions under which many software faults fail can be very difficult in

practice. Note that for popular products, it is possible to get some idea of

the most serious defects by consulting user groups and sometimes

warnings issued by the manufacturer14. A seller of software is strongly

recommended to be familiar with such sources of information.

As far as examination of the goods goes, there is no obligation on the buyer

to examine anything. Moreover, the examination is subjective in the sense

that it relates to what the actual examination might have revealed than what

a reasonable examination would reveal. Clearly, the average seller would

14 As I write this, I have in front of me a note published in the 27 August 1998 edition of Computer Weekly
which describes a nasty defect in Word 97 which only showed up when users moved the underlying operating
system from Windows 95 to Windows 98. In essence, the “AutoCorrect” option then causes Word 97 to
crash losing all the user’s changes. This was reported by users and Microsoft only then admitted to knowing
of the problem but as yet have no fix. The work-around is not to use the option. An even better work-around
is not to use Word.

LL.M. thesis, Les Hatton, 1999 Page 72

be at a significant disadvantage in any examination otherwise, because

most software products are so complex that it may be months or even years

before a user becomes sufficiently fluent in their use to appraise the entire

product as being of merchantable quality. For example, if the buyer was

buying a compiler for a programming language. It could be a very long time

before the buyer finally discovered a fatal flaw in the optimising part of the

compiler, (the part that produces the most executably efficient form of the

user’s source code), rendering it effectively useless. It is very likely the

seller would not have known this and the buyer may have made this

requirement clear at the time of the contract. The law needs to

accommodate possibly very long delays between delivery and a decision

on merchantable quality and this will be discussed in detail later. The

reader may recall from Chapter 1 that fully a third of faults take at least 5000

execution years to manifest themselves as failures.

Note also that that s.14(2) of SGA79 as modified by SSGA94 requires that

goods ‘are’ of satisfactory quality, not ‘can be made’ of satisfactory quality.

So SGA79/SSGA94 implies that if goods are unsatisfactory, the fact that

they can easily be repaired is no defence. This can be compared with the

decision in Computing Ltd. v. Allied Collection Agencies Ltd (1989) (Court

of Appeal), where Staughton LJ specifically made the comment

“... software is not a commodity which is delivered once, only once,

and once and for all, but one which will necessarily be

accompanied by a degree of testing and modification. Naturally it

could be expected that the supplier will carry out those tasks. He

should have both the right and the duty to do so ...”

This appears to lead to the conundrum that on legal grounds, defects in

packaged software should be treated differently to software with an element

of service. From the point of view of a computer scientist however, they are

the same. This point will be discussed later as will the issue of minor

defects, which are supposed to be absent also according to SSGA94, but

which will be present in just about any software, packaged or otherwise.

LL.M. thesis, Les Hatton, 1999 Page 73

It is clear that just as in other aspects of law, what constitutes merchantable

quality is likely to be very difficult to define satisfactorily for software.

Fitness for purpose

If the seller sells goods in the course of a business and the buyer, expressly

or by implication, makes known to the seller (inter alia), any particular

purpose for which the goods are being bought, there is an implied condition

that the goods supplied under the contract are reasonably fit for that

purpose. This is true whether or not that is a purpose for which such goods

are commonly supplied except where the circumstances show that they

buyer did not rely on the seller or that it would have been unreasonable for

him to do so.

There is considerable overlap in practice between fitness for purpose and

merchantable quality. Given that merchantable quality may be a little

difficult to pin down for software, it may be particularly important for a

consumer to make known precise requirements for his software before the

contract is made. (The onus of proof is on the seller to show that the buyer

did not rely, or that is was unreasonable for him to rely on the seller’s skill or

judgement. On the other hand, reasonably fit for purpose is enough, (for

example (Heil v. Hedges, (1951)), wherein pork chops containing a

parasitic worm were considered reasonably fit for eating because proper

cooking would have killed them. It is not revealed whether their Lordships

would have been keen on eating the result however.)

Durability

This is of considerable interest to purchasers of software. SGA79/SSGA94

contains no provisions as to durability, although it is recognised in the

courts, (e.g. Crowther v. Shannon Motor Co. (1975)), that if something fails

very soon after purchase, it is likely that the offending defect was present at

the time of purchase.

Although there has been some progress in this area, an essential feature of

software is that any defects have always been present. It is unprecedented

LL.M. thesis, Les Hatton, 1999 Page 74

in English law for goods to have an effectively infinite lifetime in precisely

the same condition and this will have to be considered carefully along with

the issue mentioned earlier that a significant class of defects may take a

very long time to manifest themselves. This is discussed in much more

detail in Chapter 4.

Statutory terms within SGSA82

This provides a number of implied terms however, only the following will be

discussed:-

Care and skill

There is an implied term that for any services component, they will be

supplied with ‘reasonable skill and care’ in contrast to the requirement for

satisfactory quality and fitness for purpose of a goods component.

This is clearly not very stringent. It is certainly true that the professional or

skilled person, and this includes software engineers, (although not in the

United States !), has to exercise the ordinary skill of an ordinary competent

person exercising that particular profession or art, (e.g. Bolam v. Friern

Hospital Management Committee (1957)). There is no implied warranty

that the professional person will achieve the desired result however. ‘The

surgeon does not warrant that he will save the patient. Nor does the

solicitor warrant that he will win the case’, as Lord Denning MR stated in

Greaves & Co. (Contractors) Ltd. v. Baynham Meickle & Partners (1975)).

Particularly in view of the fact that a professional person does not have to

warrant success, it would be very desirable for software suppliers to have

their wares treated under SGSA82 rather than SGA79/SSGA94. However,

this does not look promising given the ruling in St. Albans v. ICL discussed

in Chapter 3, whereby a term relating to merchantable quality was implied

in what was essentially a contract for services. This is analogous to the

legally acceptable doctrine described above that a surgeon does not

warrant to save the patient but if the surgeon makes a mistake, that is a

different matter.

LL.M. thesis, Les Hatton, 1999 Page 75

It should also be noted that in a discipline as poorly defined as software

engineering, very wide variations in ‘expert opinion’ are to be expected. As

a case in point, the reader should note the differences in Saphena

Computing v. Allied Collection Agencies, where the court specifically

commented on the relative quality of the testimony of the two expert

witnesses.

Legal control of exemption clauses

The concept of consensus ad idem historically forms the basis of contract

law. In essence, if somebody is prepared to accept contractual obligations,

the law will not intrude. Since 1977, with the advent of UCTA77, the law

seeks to protect weaker parties against unreasonable contract terms,

however, certain basic techniques still apply. These are:-

Incorporation

Generally, when a consumer signs a contract, he will be bound by its terms,

and he cannot argue that he did not read the contract or understand it,

(L’Estrange v. Graucob (1934) CA). However, when printed conditions (i.e.

exclusions) are not regarded by the courts as constituting a contractual

document, they are not incorporated into the contract and so are ineffective.

Note particularly that even if an exclusion clause is incorporated into a

contract, it cannot by reason of the doctrine of privity of contract, benefit a

person not a party to the contract, (s. 9(2)). Thus a negligent employee or

agent will not normally be protected by an exclusion clause incorporated

into a contract between his employer and the consumer, even though the

clause purports to cover employees, (Adler v. Dickson (1955) CA). This

would seem to have interesting ramifications of liability for software

engineers employed to produce a product but who do a demonstrably

inadequate job. Of course, ascribing any particular part of a software

project to a particular employee presupposes the existence of a reasonable

change, configuration and revision control system as discussed in Chapter

1. This is traceability with a vengeance.

LL.M. thesis, Les Hatton, 1999 Page 76

Misrepresentation

If the effect of an exemption clause is misrepresented to the consumer, then

the clause will be ineffective. Likewise, an oral warranty or assurance

made to the consumer may bind the trader and overrule any exemption

clause contained in the written contract, (Curtis v, Chemical Cleaning and

Dyeing Co. (1951)), J. Evans & son (Portsmouth) Ltd. v. Andrea Merzario

Ltd.).

Many software contracts still attempt to exclude all liability howsoever

generated. It is quite conceivable that a trader could make statements

which would greatly weaken this position even supposing the courts found

it did not constitute unreasonable terms.

Contra Preferentum rule

The courts do not like exemption clauses and any exclusion clause will

normally be construed against the person putting it forward. However,

clauses seeking to limit liability are more generously received than claims

which attempt to exclude all liability.

(The reader may note however that a clause seeking to limit liability in St.

Albans v. ICL (1996), c.f. Appendix, was still rejected as being insufficient).

Furthermore, Salvage Association v. CAP Financial Services Ltd (1990)

gives a detailed description of how not to do it. In this case, confusion

within the defendant itself caused an out-of-date and very inadequate limit

of £25,000 to appear rather than its updated amount of £1,000,000, a factor

of 40 greater. This did not impress the court.

An interesting form of exclusion clause appears in the current Microsoft

contract for its product Windows NT 4.0, in which it specifically excludes any

liability for the embedded Java parser. Java is a programming language

widely used to add a movie and sound capability to Web pages, inter alia.

Although Java has a publicly defined definition, the Java parser is designed

and implemented by Microsoft. They appear to be seeking to avoid any

liability for this implementation. This is akin to excluding any liability for an

LL.M. thesis, Les Hatton, 1999 Page 77

implementation of any external standard, for example, the CCITT

telecommunications standards.

Fundamental breach

The doctrine of fundamental breach asserts that any contractual breach so

fundamental as to defeat the main purpose of the contract cannot be

excluded. In practice, the advent of UCTA77 effectively subverts the

doctrine entirely.

It should perhaps be noted that where UCTA77 makes an exemption clause

totally void, the Act is all that the consumer need rely on. However, where

the Act subjects an exemption clause to the reasonableness test, the

consumer might be better placed under the common law where the

common law strikes down the clause altogether, than to find the clause

incorporated whereby the trader might succeed in satisfying the

reasonableness test.

With regard to UCTA77, it should be pointed out that the burden of

proving the reasonableness of an exemption clause falls on the party

seeking to rely on that clause. It should also be pointed out that the

consumer in UCTA77 could be a business in a number of significant

circumstances, (rather simplistically a consumer contributes nothing to the

contract).

A further layer of statutory controls over contracts specifically

between a supplier or seller and a consumer appeared with the introduction

of the EC Directive on Unfair Terms in Consumer Contracts (Directive

93/13/EEC, OJ L95, 21 April 1993), which was implemented in the UK as

the Unfair Terms in Consumer Contracts Regulations 1994 (SI 1994/3159).

This Directive provides that in a contract between supplier or seller and a

consumer, unfair terms shall not be enforceable against the consumer. In

this Directive, a term is defined as being unfair if

(a) it has not been individually negotiated,

LL.M. thesis, Les Hatton, 1999 Page 78

(b) it is ‘contrary to the requirement of good faith, it causes a significant

imbalance in the parties’ rights and obligations arising under the

contract, to the detriment of the consumer’, (art. 3(1)).

In addition, the annex to the Directive contains a non-exhaustive list

of terms which ‘may be regarded as unfair’. This does not mean to say that

they will but as a general note to suppliers or sellers, the presence of any of

these is likely to invite close scrutiny.

Unlike UCTA77, the Directive is not relevant to contracts between a

supplier or seller and a business.

Performance of consumer contracts for the Sale of Goods

This section is of considerable interest in that it casts some light on a

notoriously difficult area in software trading, viz. when is software actually

delivered. Before doing this the position of a consumer in UCTA77 will be

briefly reviewed. In essence, a buyer deals as a consumer under s. 12 of

UCTA77 if:-

(a) He does not buy in the course of a business, and

(b) The seller sells in the course of a business, and

(c) The goods are of a type normally supplied for private use or

consumption.

 As Reed points out in Chapter 1 of [28], (c) might have been

problematic since certainly hardware and perhaps software also might have

been considered as not belonging to this category. He goes onto say that

any statement on this would quickly go out of date, however today, the

sophisticated nature of the graphics and CPU power requirements of the

average interactive game mean that both computer hardware and software

for consumer systems are substantially identical in both performance and

complexity to typical business products and are very likely to be running the

same operating system, so there would be no question of a supplier

LL.M. thesis, Les Hatton, 1999 Page 79

escaping responsibility to a consumer by virtue of disclaiming their status

under (c) above.

Delivery

Delivery is defined as ‘the voluntary transfer of possession from one person

to another’ in s. 61, SGA79. It is usually affected by a simple physical

transfer of goods to the consumer.

It is attractive to think of the delivery of software as taking place when the

disc or CD containing it is handed over, however this is far too limited to

take into account software, which could be physically sent by e-mail on the

seller’s instigation or downloaded on the buyer’s instigation. In either

circumstance, any computer scientist would argue that the software had

been delivered if accompanied by the appropriate documentation whereby

the software could be invoked, and , if the software was accompanied by a

licensing system, the appropriate key such that the licensing system

allowed the software to be run. This is analogous to the transfer of the

means of control as for example, when the ignition key is handed over with

a car, an equally acceptable alternative in the eyes of the law. It is therefore

misleading to associate delivery of software only with the transfer of a

tangible commodity such as floppy disc or a CD. The reader should also

note at this point, the relationship with the ascertainment of goods as

described earlier where it was stated that software is never really

ascertained as each copy is absolutely identical with no means of being

distinguished from any other copy.

Time of delivery

The time of delivery of goods is not generally ‘of the essence’, (i.e.

incorporated into the contract). In this case, if delivery is delayed

unexpectedly, the consumer can with reasonable extended notice, make it

of the essence such that if delivery still does not take place, this is a breach

of a condition of the contract and the buyer is entitled to repudiate the

LL.M. thesis, Les Hatton, 1999 Page 80

contract. A similar rule applies to contracts for the supply of services, c.f.

Charles Rickards Ltd. v. Oppenheim (1950).

This is particularly relevant for software developers. Software systems

which contain a bespoke element are late more often than they are on time

as can be seen from the statistics quoted in the introduction. If the buyer

gives appropriate extended notice requiring delivery, this will be

incorporated into the contract, (i.e. it will act as if ‘of the essence’). This may

of course may not be the most attractive solution for the buyer, but given that

a very high percentage of bespoke systems which are late never get

delivered at all, it may well be the lowest risk avenue the buyer can take.

The seller loses out of course by losing whatever resources have been

expended so far, but that’s show biz. as they say.

Delivery by instalments

The buyer was under no obligation to accept only part of the goods under s.

30(1) of SGA79 and this has been further clarified in SSGA94. Further

more, unless otherwise agreed, the buyer is under no obligation to accept

delivery by instalments, s. 31(1), SGA79.

This is peculiarly relevant for software. The reader may recall from the

discussion in Chapter 1 that software has a somewhat artificial separation

of its life-cycle into Development and Maintenance. The idea is that

software is developed, (i.e. finished) and then supplied, (i.e. maintained).

Rarely has the use of English been stretched to such breaking point. In

point of fact, bespoke and modified software systems are almost invariably

supplied in instalments as the system gradually (and hopefully) converges

to something the buyer requires. What is initially the product of the so-

called development phase is very rarely what the buyer actually wanted or

indeed finishes up with. Buyers are used to this particularly as they are

frequently at least partially culpable as a result of being unable to define

precisely what they want in the first place. It is interesting to consider this in

the light of the comments made by the court in Saphena Computing v.

LL.M. thesis, Les Hatton, 1999 Page 81

Allied Collection Agencies as discussed in Chapter 3, whereby software

can be expected to be delivered with faults in which the buyer is under

obligation to give the seller time to correct. This surely is delivery by

instalments by any other name. The formal name for delivery by

instalments is incremental delivery and it is considered by many to be a key

feature of a successful product given the lamentable performance of its

opposite, the so-called big-bang approach. Here we have an example

whereby a delivery strategy which greatly facilitates the delivery of a

successful product conflicts with the legal position.

Acceptance

Acceptance and delivery are of course related, but delivery is a necessary

but not sufficient condition for acceptance. Acceptance takes place when:-

a) The consumer tells the seller that he has accepted the goods or

b) The goods are delivered and the consumer either does an act

inconsistent with the seller’s ownership, or he retains the goods

beyond a reasonable time without telling the seller that he rejects

them, (s. 35, SGA79 and some clarifications in SSGA94).

Note of course that if the consumer signs some form of acceptance

note on delivery, this would be deemed acceptance and would very likely

put the consumer beyond help of UCTA77 for example as such an

acceptance note would not be considered a ‘contract term’ within the scope

of the Act.

This is particularly murky water for software because the seller only sells a

licence. Even with packaged software for which there would be a

temptation to treat as goods, the media content of the package is generally

irrelevant. Furthermore, if the user is given a demonstration copy, his

pattern of use would be indistinguishable from the full copy unless some

particular function was temporarily disabled. Software of course shows no

wear or outward signs of being used further complicating the issue.

LL.M. thesis, Les Hatton, 1999 Page 82

Software suppliers frequently exhort users to sign a registration document.

The claimed rationale behind this is to inform the consumer of new

products, updates and so on. However, there is a risk that it might be

construed as a form of acceptance.

Examination of the goods

The consumer is not deemed to have accepted goods unless and until he

has examined them or has had a reasonable opportunity of examining

them, s. 34, SGA79 with clarifications in SSGA94

This is also murky water. We must ask the question what constitutes a

reasonable time to examine a piece of software for satisfactory

performance. In Bernstein v. Pamson Motors (Golders Green) Ltd., the

emergence of defects three weeks after delivery of a car was not deemed

sufficient cause for the rejection of the product as the car had then been

accepted. Software is now so complicated that such examination is likely to

take a very considerable time and expend significant resources on behalf of

the consumer15. Indeed, if test coverage, (the percentage of source code

exercised by a particular set of tests) is a reasonable criteria for examining

the functionality of a piece of software, the reader will recall that even the

developers do not examine the software in much detail, (only around 40%

of all source code statements of a program are exercised by any of the tests

carried out prior to release, [9]).

The most reasonable solution from the point of view of the consumer is that

given that software does not wear out, that the consumer should be entitled

to return a piece of errant software at any time after purchase if it fails to

perform a critical function. To restore a reasonable parity, the courts could

perhaps consider the trade-off with any benefits which accrued during the

same period. There could be none or many, depending on the software.

For example, supposing the user purchased a word-processor and used it

15 We have gone full circle here. A modern car contains several hundreds of thousands of lines of software so
that the judgement in Bernstein may become irrelevant in the near future simply because of technological
advance.

LL.M. thesis, Les Hatton, 1999 Page 83

extensively producing many files before discovering eventually that it failed

to carry out a critical function which he understood it to perform. If the user

simply returns the software, he would not be able to read any of the files

from then on, so there may be no actual benefit.

Effects of acceptance

Once goods have been accepted in a non-severable contract, even

grounds of rejection based on the statutory rights enshrined in SGA79 are

insufficient. The consumer may be left with a claim for damages only.

Acceptance of goods having latent defect

As has been discussed above, by the time a latent defect comes to light, the

consumer may be held to have accepted goods on the basis of having had

them a reasonable time without notifying the seller that he has rejected

them. Once again the consumer could only claim for damages, however, it

could be argued:-

a) that use of the product is the only method of giving it a reasonable

examination.

b) that use of the product would not be inconsistent with the seller’s

ownership unless it had the effect that the consumer could no longer

return the goods in substantially the same condition as when

purchased.

Software clearly falls into both categories. First of all, given the widespread

differences between written claims as to the functionality of software and its

actual behaviour, a) is unquestionably true. Similarly, use of the software in

no way affects the condition of the software itself, as it will be in precisely

the same condition as when purchased, so even substantial use of the

product would not prejudice the seller’s ownership with one proviso:-

software is upgraded by its original suppliers on a fairly regular basis to

include new features, correct defects and so on, so the market value of a

LL.M. thesis, Les Hatton, 1999 Page 84

prior release will be diminished at this point often to the point of being

valueless.

Repairs

We have already seen from the ruling in Saphena that a supplier should be

given the right to correct any defects notified in a product in a reasonable

time. There is a danger that the courts could argue that repeatedly doing

this could lead to the goods being deemed to have been accepted.

This is relevant to software in that it is likely to contain numerous defects

which the consumer would like to be fixed. In which case, the consumer

should make it clear that if repairs are agreed upon, that failure to carry

them out effectively, (a significant risk for software as pointed out in Chapter

1), would be without prejudice to the right to reject.

Note finally that the common act of replacing a defective item is completely

useless in the case of software. All copies are similarly flawed.

Remedies

In this section, only the position from the point of view of the trader being at

fault will be considered.

Damages

The basic remedy for breach of contract is damages. The object of

damages is to compensate the innocent party in monetary terms in so far as

money can do this, and thereby to put him in the same position he would

have enjoyed had the contract been duly performed. It used to be thought

from Addis v. Gramophone Co. Ltd. (1909) that damages for breach of

contract were confined to compensation for financial loss, that is loss

quantifiable in monetary terms. However a series of cases beginning with

Jarvis v. Swans Tours Ltd. (1973) CA has allowed moderate damages in

compensation for disappointment and distress suffered by the innocent

party.

LL.M. thesis, Les Hatton, 1999 Page 85

Given the not unknown complete corruption of file systems and subsequent

loss of everything, given frequently inadequate back-up procedures, which

can occur with off the shelf products such as Windows ‘95, it would not take

much to convince a court of ‘disappointment and distress’.

As a final point, however, it is worth noting that where there is

contractual liability for defective software, the position will be very similar to

that in negligence as discussed next, except where this liability arises from

the express terms of the contract or the terms implied into contracts for the

supply of goods. Note however that liability is strict (i.e. independent of

fault) in contracts for the sale of goods and also for product liability in

comparison with tort where it is not strict.

Delictual Liability

This area will also be considered later when a model of delictual liability

and its relationship to duty of care is discussed. The whole area is

somewhat theoretical as there have to date been no cases in which liability

for software defect has been decided in delict. For now, it will simply be

noted that delictual liability arises by definition from negligence and the

discussion will follow a typical up-to-date legal viewpoint as advocated by

Antony Garrod in [23].

Delictual liability can be usefully subdivided into:-

• Physical injury or property damage

• Negligence claims for financial loss

- Consequential losses because software is unusable

- Loss caused by reliance on unreliable information, for

example a financial loss which might result from a defect in a

piece of financial modelling software.

Negligence is "conduct falling below the requisite standard to protect

others against unreasonable risks of harm". Everybody has obligations to

third parties and delictual liability deals with those relationships which fall

LL.M. thesis, Les Hatton, 1999 Page 86

outside the law of contract, the area of delict most relevant to software being

negligence. This does not mean to say that in either business or private

lives, people are strictly liable i.e. liable without fault, for the consequences

of all of their actions. This is covered by the area of statutory liability to be

discussed shortly. On the other hand, it would be reasonable to expect that

manufacturers of defective products including defective software, have

some liability for damage caused to consumers.

Tests have been developed by the courts to achieve a sensible

balance leading to the following questions which can be:

• is there a duty to take care ?

• what is the standard of care ?

• did the defect cause the damage ?

• could the ordinary man have foreseen that this damage might result

from this cause ?

 Duty of Care

First and foremost, a duty of care is owed to the subject's neighbour in law.

The "neighbour in law" is:

"Those persons who are so closely and directly affected by the subject's act

that the subject ought reasonably to have them in contemplation as being

so affected when directing his or her mind to the acts or omissions which

are called into question".

In essence, this means those people who the subject could reasonably

have foreseen being adversely affected. In 1932 the House of Lords first

held a manufacturer owed a duty of care to the ultimate consumer and was

therefore liable in negligence for a defective product. In the case of

Donoghue v. Stephenson (1932), AC 562 a woman allegedly drank ginger

beer from an opaque bottle which she subsequently discovered contained

a decomposing snail. She was later ill and since the court found that

LL.M. thesis, Les Hatton, 1999 Page 87

decomposing snails had no place in ginger beer bottles, and that the

manufacturer had a duty of care to somebody who might drink its ginger

beer, the unfortunate lady was awarded damages.

 Standard of Care

In delict, the standard of care would be that expected of a reasonably

competent person. In areas of greater risk, the standard imposed by the

court is likely to be higher. However, given that standards are currently not

very high in software development as described in Chapter 1 to the point

where it is hard even to define the concept of a reasonably competent

programmer16, it is highly desirable that there be a development in the law

requiring higher, more professional standards to be exercised by

producers. This cannot be addressed by delict however, and should be

addressed by contract. If a higher standard is desired, it should be

contractually required.

To see that standards change, for example, would the reader expect

the same standard of care from a doctor at the beginning of the century as

now ?

In the U.K., the British Computer Society has in the last few years become a

member of the Engineering Council, which governs standards in various

engineering disciplines, and suitably qualified software developers can as

a result, be granted the Chartered Engineer17 qualification (C.Eng.).

Amongst other things, this has recently enabled developers to get

professional indemnity insurance for probably the first time, so evidently the

insurance companies believe in the screening process18 !

16 This can be illustrated by the somewhat ‘tongue-in-cheek’ but nevertheless accurate duality in which a
person with 10 years experience is frequently described in the industry - 10 years experience or 1 year 10
times ... The distinction is quite clear to an engineer but is likely to be lost in a courtroom.
17The British Computer Society now recommend that the quality of every safety-related computer system be
the responsibility of a named engineer holding this qualification or its equivalent, as was discussed in
Chapter 1. The equivalent European qualification is the Eur.Ing. which is available to those British holders
of the C.Eng. who have spurned a centuries old tradition of not being able to speak any language other than
English.
18 Although not for engineers involved in Year 2000 work which is specifically excluded !

LL.M. thesis, Les Hatton, 1999 Page 88

This is in stark contrast to the U.S., where the principle of professional

malpractice requires the observance of a higher duty of care from members

of recognised professions, and to which software engineering does not yet

belong. As a result, a number of cases have been dismissed by the courts

on the basis of a refusal to accept the concept of computer malpractice. No

doubt this will be reviewed as similar initiatives to the C.Eng. qualification

spread to the U.S. In fact, a draft international standard for the use of

computer-based products in safety-related systems, IEC 61508, specifically

provides for the notion that as the potential for hazardous effects of a system

on its end-user increase, so there is an increasing requirement for more

sophisticated development techniques to be used for its implementation. In

other words, developers are encouraged to recognise the duty of care from

the beginning in terms of five levels of increasing integrity, (known as SIL

levels 0-4 or System Integrity Levels) and IEC 61508 then attempts to

define (with varying success it has to be said), the appropriate standard of

care. Whilst not perfect, it is an important step in the right direction and has

a close relationship with legal models.

Another example illustrating by way of analogy as to how the law

develops with respect to changing views of acceptable practice, concerns

the attitude to the wearing of safety belts. If drivers or passengers were

involved in an accident and suffered damage as a result of another road

user's negligence, then they would be awarded damages. However, Lord

Denning in the English Court of Appeal found that an occupant of a car

involved in an accident caused by somebody else's negligence contributed

towards their own injuries by failing to wear a safety belt and the damages

awarded were reduced by 20% from what they would otherwise have been.

Now it is a criminal offence not to wear a safety belt in the U.K. The same

holds true in many other countries.

It is enlightening to compare the concept of standard of care as it has

arisen in well-known cases and apparently highly relevant cases in

maritime law. Three important cases have occurred, the U.S. case of the

LL.M. thesis, Les Hatton, 1999 Page 89

T.J. Hooper, and the cases of the Lady Gwendolen and the Marion, heard in

the English courts. Each case concerns the failure of process in the sense

of that defined in Chapter 1, and the issues are summarised in the following

table 3 to avoid going into too much detail.

Case Result Software Analogy

T.J. Hooper

(U.S.)

Failure to provide radio led to a

storm sinking two barges which

they could have avoided.

Failure to supply tools or process

preventing a known class of

defect.

Lady Gwendolen

(U.K.)

Radar was provided but no steps

were taken by the employer to

ensure its proper use even

though the employer was aware

of regular transgressions from the

evidence of logs which showed

the ships were charging about in

fog, leading to a collision.

Tools are provided to avoid well-

known problems, but their use is

not mandated even though

evidence exists to show that they

are not being used. The

developers are charging round in a

software fog.

Marion

(U.K.)

Ship’s anchor hit pipeline

unmarked on out of date charts.

The court ruled that it is the

 owner's duty to ensure that up to

date charts are available and used

for navigation.

Senior Management's duty to

make sure standards and other

guiding documentation is up to

date before the project starts and

that they are used throughout the

project.

Table 3. Some cases from maritime law which may provide relevant legal guidance.

To conclude, in software development, if a regular agreed set of checks are

verifiably used, the developer would appear to be in a far better position to

demonstrate it had discharged its duty of care than if not. If this is the case,

it would certainly help justify the presence of formal quality systems such as

those based around ISO 9001, but, and this is a very big but, this is not

sufficient to avoid responsibility, as evidenced in St. Albans v. ICL (1996),

(discussed in Appendix A), whereby ICL’s ISO accreditation was not to the

LL.M. thesis, Les Hatton, 1999 Page 90

author’s knowledge mentioned at any stage of the proceedings, even by the

defence.

 Defect and damage caused

It is normally a question of fact whether or not the defect caused damage,

although development of artificial intelligence which either directly or

indirectly causes damage, will further complicate the issue. If there is no

factual link between the defect and the damage, there will be no liability in

delict. It is also necessary to recognise that the question of liability may well

be affected by the type of damage caused. If there is physical injury or

property damage, this is usually straightforward and the test for an

existence of duty of care will be that used in Donoghue v. Stevenson

(1932). If, as is likely, damage is restricted to economic loss, the type of

damage is an important factor.

 Foreseeability

This revolves around whether the reasonable man or woman could have

foreseen that the particular fault could have caused the damage. There is a

famous case which helps delineate this. Some years ago, there was an oil

spillage in Sydney Harbour and some workmen were operating an

oxyacetylene torch on a pier. The foreman on hearing of the spillage first

instructed them to stop work but after a brief inspection told them to

continue. Molten metal from the oxyacetylene torch then dripped from the

pier and instead of falling into the water, landed on a piece of driftwood

covered in cotton waste which ignited and then set fire to the oil. This fire in

turn destroyed the pier and ships. Not surprisingly, the Privy Council held

that the ordinary man or woman would not have foreseen that particular

damage could have been caused, The Wagon Mound (No. 1) (1961) ! This

can be distinguished from the so-called ‘egg-shell skull’ cases where

damage is foreseen but not its full extent.

This may well turn out to be an important defence in any software case as

the connection between a software fault and the failure it causes is

LL.M. thesis, Les Hatton, 1999 Page 91

frequently very tenuous and would have been very difficult indeed to

foresee or even if foreseen, the full extent of the failure would not be

apparent19. In fact, as described in [22], a significant percentage of failures,

35% in their case could not be ascribed to any particular fault. Indeed

computer science has no satisfactory model whereby a particular fault can

be predicted to lead to a certain kind of failure, without actually running the

software to see what happens. The reverse is also true that there is no

model whereby a failure can be related to one or more responsible faults,

although this is compounded by a laissez-faire attitude to the inclusion of

standard diagnostic procedures which amounts to negligence in many

software systems. The reader may recall the exceedingly complex

relationship between fault and failure investigated by [18] and described in

Chapter 1.

 Physical loss v. Economic loss

The examples of negligence which have been discussed so far relate to

physical loss or damage. However, it is likely that loss caused by defective

software will be economic loss. Where economic loss such as loss of profit

is consequent upon physical loss or damage, then the courts may award

this. The case of Martin v. Spartan Steel Alloys illustrates this point well.

Workmen hit an electricity cable whilst digging the road. The local

electricity board disconnected the cable as a result of which Spartan Steel

had to close down their electrical furnace in which they were smelting

stainless steel, around the clock. To save the furnace they injected oxygen

into the metal to enable it to be poured out and were successful in claiming

damages for the metal, the loss of profit on that smelt but were not allowed

loss of profit on four other smelts which they could have carried out before

the electricity was turned back on again. Lord Denning and Lord

Wilberforce both said that the loss of profit on the lost smelts were equally

19 Consider for example the AT&T failure in 1990 discussed in Chapter 1. Any software engineer would have
foreseen a failure of some kind given the nature of the fault, but very few if any software engineers would
have ventured the opinion that the fault could collapse the whole of the US long-distance telephone network
within a few minutes which is precisely what happened.

LL.M. thesis, Les Hatton, 1999 Page 92

as foreseeable as the loss of profit on the damaged metal but, as a matter of

policy, they drew the line on economic loss consequent upon physical

damage. This is in some contrast to the case of Junior Books Ltd. v. Veitchi

Ltd. (1983) where the House of Lords found for the plaintiff ruling that when

there was sufficiently close relationship between the plaintiff and the

defendant, that there could be a duty of care to avoid financial losses. In

this case, a floor laid by the defendant proved defective and the plaintiff was

able to recover both the costs of replacing the floor and lost profits while it

was being relaid.

The courts have awarded damages for pure economic loss caused

by negligence where there has been a special relationship between the

person causing the loss and the person suffering it, or where it can be

demonstrated that the person suffering loss relied upon the person causing

it exercising a particular skill.

There were a number of cases in England in the 60's and 70's which

indicated that where a professional man or woman gives advice which

affects the safety of buildings, machines or materials, his or her duty is to all

who may suffer loss. However, in a recent case in the House of Lords,

Murphy v. Brentwood District Council, these cases have been largely

overturned. Lord Harwich made the following points in relation to the

difference between dangerous defects and defects of quality:

• When a manufacturer negligently puts into circulation a product

containing a latent defect which renders it dangerous to persons or

property, he will be liable in tort for injury to persons or damage to

property which that product causes.

This is particularly relevant to safety-related development where, by

definition, failures in product may be dangerous to persons or

property.

LL.M. thesis, Les Hatton, 1999 Page 93

• If a manufacturer produces and sells a product which is merely

defective in quality i.e. it does not cause loss or damage - even if it is

valueless for the purpose for which it is intended - the manufacturer

is only liable at common law under contract - the common law does

not impose any such liability in tort except where there is a special

relationship or proximity (as in Hedley Byrne v. Heller) imposing on

the manufacturer a duty of care to safeguard the user from economic

loss.

• No such special relationship exists between a manufacturer and a

remote user.

The above would seem to suggest that, if you discover a defect in COTS

software which would render it unusable, e.g. because it could cause

personal injury or damage, this is a defect merely in quality and no liability

lies in delict because of the absence of a special relationship.

So far, both physical loss and damage and consequential economic

loss caused by software have been considered. However, the situation

when software corrupts data which is used or relied upon by a third party

who as a result, suffers loss, has not yet been considered.

Consider for example, the position of accountants or auditors who

negligently produce accounts. They would clearly have liability both in

contract and in negligence to their client if they suffer loss. It is reasonable

to ask if they are also liable to shareholders or third parties who rely upon

the accounts for valuing shares in the company which they purchased. This

of course is an example of economic loss.

In Caparo Industries v. Dickman the court added to the list of tests for

negligence that of the reasonableness or otherwise of imposing a duty of

care.

In this particular case, the financial accounts were in more or less

general circulation and may foreseeably have been relied upon by

LL.M. thesis, Les Hatton, 1999 Page 94

strangers for one of a number of different purposes which the auditors had

no specific reason to anticipate. There was not sufficient proximity in the

relationship between them and the person relying on the statement unless it

could be shown that the auditors knew that the accounts would be

communicated to the person relying on it, either as an individual or a

member of an identifiable class, specifically in connection with the particular

transaction, or transactions of a particular kind and that the person would be

very likely to rely on the accounts for the purposes of deciding whether to

enter into a transaction. In this case, it was ruled that the auditors had no

duty of care to the public at large who relied on the accounts to buy shares

in the company.

The above seems to suggest that apart from the immediate client, if software

is written with the knowledge that it is going to be used by another person or

a group of people, e.g. a trade association and it is known that they are

going to rely upon the software for the particular purpose for which it has

been developed, then there may well be liability to those third parties for

economic loss. On the other hand, if software is written to be issued

generally to the public at large then, outside of the contractual liability,

unless it can be shown that there is a special relationship or close proximity

with the customer, the software developer is unlikely to be liable under

delict for economic loss caused by the software. This does leave at least

one area where the water is very muddy indeed. Supposing a company

issues an accountancy package with amongst other things a claim that it is

suitable for small businesses, but the software is issued as a COTS

package. Then the package is being issued to the public at large although

it is clear that a section of its intended users will depend on its correct

performance. What then is the position ? In this case, it would seem that,

although issued to the public the mere functionality of the program suggests

a close link with the intended user even though anonymous. This would

presumably be amplified if the company solicited customers for a software

support service for a fee, thus inviting them into a close relationship.

LL.M. thesis, Les Hatton, 1999 Page 95

Statutory Liability

This is liability under Act of Parliament and follows directly from the

European Product Liability Act of (1985) as embodied in the Consumer

Protection Act of 1987, (CPA87). It covers only damage to person or

property and it is far from clear whether software actually falls within its area

of influence. The Act provides that subject to the remaining provisions of

the Act:-

“... where any damage is caused wholly or partly by a defect in a

product, every person to whom subsection (2) below applies shall

be liable for the damage.”

The first and most obvious question to ask is does this Act apply to

software. This is a far from trivial question. Is software a product ? This is

not related to the “Software as goods or services” issue described later

because the Act defines a product as ‘any goods or electricity’ including

components. As a former physicist, this immediately baffles me as

electricity is certainly not a product in any tangible sense. Indeed, it is

undetectable apart from its effects. Furthermore, it has been known since

the 19th century through pioneering work by James Clerk Maxwell and

numerous distinguished predecessors such as Oersted and Edison that

electricity in one of its manifestations is magnetism. Now software is stored

on a floppy disc as a modulation of magnetic fields. In order for a computer

to read the software on a floppy disc, the floppy disc spins. In other words,

the software then appears to the reading heads of the floppy disc drive as a

variation in time of a magnetic field. According to Maxwell’s Laws of

electricity and magnetism, a time-variant magnetic field is also an electrical

field. Similarly when software is transmitted down a communications line it

also appears as a modulation of electric and magnetic fields. Clearly then

software is ‘electricity’ in both cases and any attempt to distinguish between

even these is doomed by the laws of physics.

LL.M. thesis, Les Hatton, 1999 Page 96

The Act goes on to define ‘goods’ as including inter alia, ‘substances’

which are then defined in a magnificent piece of circularity as ‘natural or

artificial substances’. Some legal authorities such as Reed in [28] in a very

detailed review have taken this to infer that software on a floppy disc or

tangible medium is ‘goods’ as ownership of this tangible manifestation is

transferred, whereas software installed by copying from some other source

would lack the necessary tangibility. The author must admit to disagreeing

with this viewpoint. Given the choice, he would argue that software is part

of this Act by virtue of the admissibility of electricity independent of the

method in which it is supplied. Having said this, he would also argue that

the wording in its present form is effectively useless and needs clarifying

considerably for the needs of the digital age. Perhaps a wording to the

effect that ‘any goods or electricity or digital information howsoever stored

or transmitted’ would be more appropriate. Given that software manifestly

can harm people, (c.f. for example the Therac-25 incident described in

Chapter 1 whereby 6 people were massively overdosed by an active

radiological scanner between 1985-1987 leading to 3 of them dying of their

injuries), this would be more appropriate than excluding it.

Other authors such as [30] have been rather more evasive about the

relationship with software and have stated simply that software ‘does not lie

outside the scope of the Directive’. It is the author’s opinion and not to put

too fine a point on it, that this kind of legal equivocation needs to stop and

suitable wording drafted to protect society soon as it becomes increasingly

reliant on and exposed to software controlled systems so that when the

inevitable disasters occur, innocent parties are appropriately protected and

the attention of software suppliers is more forcefully directed to the need for

reliable and safe software systems.

Assuming that the Act is indeed relevant, it contains two elements of

particular interest to software developers.

First of all, it provides for strict liability, i.e. liability without fault, in

contrast to delictual liability where negligence has to be proved by the

LL.M. thesis, Les Hatton, 1999 Page 97

plaintiff. In essence, the Act implies a statutory partnership of producer /

supplier / retailer, all of whom are jointly and severally liable for damage

(which means death, personal injury or damage to private property caused

by a defect, i.e. a fault rendering a product less safe than it could

reasonably be expected to be).

Second, it provides for a number of defences under the Consumer

Protection Act 1987. One of particular interest to software developers is that

relating to state of the art knowledge, also known as the development risks

defence, [31]. In essence, this states:

"... the state of scientific and technical knowledge at the relevant time

was not such that a producer of products of the same description as the

product in question might be expected to have discovered the defect if it

had existed in his products while they were under his (or her) control."

In essence, this means that the onus is on the producer to prove that

no producer of the same products could have avoided a particular defect.

So as [31] points out, such a defence would not cover failures in a quality

system which led to a software producer releasing software containing say

some known frequency of defects. In other words, the producer is

knowingly releasing a defective product, but without negligence. It appears

that this defence is applicable only if:

• the defect arises from something unforeseen at the time of

production; or

• the defects are foreseeable, but that current technology does not

allow the elimination of risk, for example, on economic grounds.

Given the known incidence of a class of entirely avoidable failures as

described in Chapter 1 for example, it would be unlikely for a producer of a

safety-related system to succeed in a claim that faults, statically detectable

by a number of tools described in [23] for example, could not economically

be removed. It is equally unlikely that the producer could argue that a non-

LL.M. thesis, Les Hatton, 1999 Page 98

zero occurrence rate of faults during unit testing, dynamically detectable by

the tools also described in [23], was reasonable. The state of the art is quite

clear, and it seems therefore that the presence of such faults could not

reasonably be argued to fall within the development risks defence.

The clear nature of such avoidable failures was emphasised in the BSI

debate described in [23] which moved that ISO 9001 certified companies

should not release product with statically detectable faults. Even if a

particular software package had a much lower than average, but

nevertheless non-zero frequency of such a fault, this would not be a

defence as was proven in the Smedleys v Breed case, which involved the

presence of a caterpillar in a can of peas. A defence to the extent that only

four complaints had arisen in an annual production of 3.5 million cans was

rejected on the grounds that an inspection, could have found even those, if

it had looked in the right place. A further nail in the coffin of invoking the

development risks defence for software, would seem to be that any defects

in software are man made. It is not subject to the laws of the natural world

as has been discussed at length in Chapter 1.

One final point about the Act is worth making. Since much software

is produced outside the EU and is distributed within the EU, it should be

noted that the first importer into the EU may end up with residual liability for

defective products which it distributes and should therefore in its

agreements with principals outside the EU, have appropriate indemnity

provision in its contract.

To the author’s knowledge, no cases in Europe have yet tested this

Act, (it is only enacted in England and Greece currently in spite of coming

into force over 10 years ago and even in England there was an alteration to

the wording shifting the balance in favour of software suppliers which was

not greeted kindly by the EU). So, although there has been much talk of

potential liability, it currently has the aspect of a toothless tiger although

things may change, particularly at the Year 2000. It is to be hoped so.

LL.M. thesis, Les Hatton, 1999 Page 99

Summary

In contractual relationships, many lawyers now believe that much of the

effort currently expended in drafting exclusion clauses might more profitably

be spent on attempting to allocate risks reasonably, as a clause which

acknowledges liability but seeks to limit it in some reasonable fashion, is

much more likely to be acceptable to a court than one which seeks totally to

exclude liability, or to restrict it to derisive levels. This is discussed in

considerable detail shortly.

In considering negligence, legal precedents, notably from marine

law, clearly imply that an employer must supply proper tools, lay down

proper procedures for their use, and ensure that these procedures are

followed. In this regard, many software developers today would be

decisively inadequate.

For statutory liability, at least in Europe, the development risks

defence is not likely to provide software developers with much protection.

There remains therefore a strong incentive, especially in safety-related

systems to do the very best that the budget will allow, recognise risk

explicitly in the system, and keep careful records as to exactly what was

done and why. In this regard, the law used wisely, can lead developers to

much higher levels of quality in safety-related systems, to everybody's

benefit.

LL.M. thesis, Les Hatton, 1999 Page 100

Chapter 3: Influential cases before the courts

Since UK law is fundamentally based on common law and precedent and

software engineering is a comparatively recent phenomenon, it is

particularly important to seek out those few relevant cases looking for

important clues as to how courts can be expected to treat disputes, given

that software engineering itself is so poorly understood. Until very recently,

there were no cases which provided such insights. Latterly however, two

important cases have been tried and both cast significant, albeit somewhat

different light on the subject. These two cases are notable for a number of

reasons:-

• Both cases went to the Court of Appeal and the judgements therefore

carry equal weight

• Both are recent

• The cases are very typical of software development failures as

detailed in Chapter 1

• Both contain important material on the “Goods v. Services” issue.

Recall that this relates as to whether delivered software is goods, and

therefore covered by the Sale of Goods Act, 1979, SGA7920, with the

attendant implied terms of title, description and fitness for purpose, or

services, in which case it is covered by the Goods and Services Act,

1982, SGSA82, and is subject only to the requirements of

reasonable skill and care

In this discussion, the judgements will be compared carefully against

the engineering background. The discussion will be heavily footnoted so

that the main discourse is in the text, and engineering comments with

references will be placed in footnotes. The footnotes will therefore provide

20 Future cases will of course be covered by SSGA94.

LL.M. thesis, Les Hatton, 1999 Page 101

a relatively painless engineering viewpoint hopefully without disturbing the

flow of the narrative too much.

Both cases will be discussed individually, a compliance matrix of the

two cases will be assembled, and then they will be discussed collectively to

compare the agreement and consistency of the two judgements. Following

this, a third case

Saphena Computing Ltd. v. Allied Collection Agencies Ltd.

(1985)

In this case, Saphena Computing, the plaintiff, agreed to supply a mixed

system of hardware and software to Allied Collection Agencies, the

defendant under two contracts. The first was for the supply of software

ordered in January, 1985 with installation between February and April21.

There were teething problems but satisfactory performance was achieved

by April/May22. In August 1985, a second agreement was concluded

involving delivery of further software and modifications to the existing

software to ensure compatibility. This was carried out against a backdrop of

varying defendant specifications23 . This ran into trouble with unsatisfactory

attempts to correct defects and the parties mutually agreed to terminate their

contractual relationship on February 11th, 1986.

Subsequent to this, the defendant contracted another programmer to

attempt to finish the job off satisfactorily. During the process of this work, the

programmer copied some of the original source code and the plaintiff

21 This is a relatively small project in software terms. It is not known how many programmers were
involved but it is unlikely to be more than a handful. Even with small projects, project planning in usually
very poor and there is a considerable uncertainty in the project time of delivery as was noted in Chapter 1.
22 This would be considered quite successful. As was seen in Chapter 1, there is a very high risk of software
projects failing. Finding a software project without teething problems is rare to the point of non-existence.
23 This is the key area to pursue from an engineering point of view. One of the most disruptive factors
which can occur in software developments is when the end-users change their mind about the desired
functionality part way through the development. It is a common misconception that because software is
easy to change, it is easy to modify ‘on-the-fly’ to new requirements. Nothing could be further from the
truth as was described in Chapter 1. It is certainly easy to change, but the effects of even simple changes on
all but the most trivial of software systems are almost impossible to predict. The reader might like to reflect
on the 3-line change which AT&T did to one of their network management systems in January 1990 as
described in detail in Chapter 1. The change was incorrect and the result was that the entire eastern seaboard

LL.M. thesis, Les Hatton, 1999 Page 102

commenced an action against the defendant on grounds of copyright as

well as wrongful termination of the second agreement. The defendant

responded with a counter-claim on the grounds that the original software

was not fit for purpose.

The judgement

The plaintiff, Saphena Computing, succeeded in all significant aspects.

Particularly relevant to the comparison here is that the court implied a

fitness for purpose term as witnessed by the following words of Mr.

Recorder Havery QC:-

“In my judgement, it was an implied term of each contract for the

supply of software that the software would be reasonably fit for any

purpose which had been communicated to the plaintiffs before the

contract was made and for any further purpose subsequently

communicated, provided in the latter case that the plaintiffs

accepted the defendants’ instructions to make the relevant

modification.”

However, the defendants counter-claim that the software was not fit

for purpose was quashed as the software had been deemed to be accepted

at termination and the fitness for purpose term was therefore deleted.

The plaintiff got a reasonable sum and was freed from the obligation

to complete the work. It should also be noted that the court upheld the

plaintiff’s argument that the requirements had indeed been significantly

changed by the defendant.

Discussion

Given that the supplier had originally supplied something apparently

deemed satisfactory, the likely primary cause of failure of this software

project was the changing requirements, so the judgement seems just. In

particular the court noted the following comments from an expert witness:

of the US lost its telephones for many hours. The direct cost of this was estimated at $1.1 billion. So much
for easy to change !

LL.M. thesis, Les Hatton, 1999 Page 103

“Just as no software developer can reasonably expect a buyer to tell

him what is required without a process of feedback and

reassessment, so no buyer should expect a supplier to get his

programs right first time”.

In other words, it is not of itself grounds for breach of contract to

deliver software with faults in it and the supplier should be given the

opportunity to make good. Mr. Recorder Harvey QC went on to make the

remark:-

“Further, even programs that are reasonably fit for their purpose

may contain bugs.”

It should be made very clear however that this judgement was made

on a case for which specifications were a particular problem and indeed

were changing, an issue which will be returned to later.

Criticisms

The case contained two specific areas which can be criticised:-

• In the judgement, it was stated that it was unnecessary to decide

whether the software was goods or services as the same

requirements would be imposed under both headings. At first sight,

this appears to be manifestly odd as the first falls under SGA79, with

the attendant implied terms of title, description and fitness for

purpose, whilst the second falls under the SGSA82, requiring only

reasonable skill and care24. However, closer analysis suggests that

the judgement was based on the nature of the contract between the

two parties rather than with reference to any particular statute.

24 The state of the art in software engineering is so bad that reasonable skill and care would be relatively
easy to demonstrate even if the software didn’t work at all. In fact, many well-meaning and skilfully
implemented projects are never delivered as evidenced by the US Department of Defense statistics quoted in
Chapter 1 for example !

LL.M. thesis, Les Hatton, 1999 Page 104

• The court decided that although the defendant had the right to the

source code to correct the system25, they did not have the right to

copy it. This is a naive judgement and seems a little harsh against

the defendant. There are occasions where software correction

necessarily requires copying. Indeed in the now ubiquitous branch

of software engineering known as Object-Oriented design and

development, there is a specific concept known as the copy

constructor. Also, at what point is software copied ? If the defendant

had used interfaces to libraries supplied by the plaintiff, is this

copying ? Any reasonable engineering decision would argue that

this was not copying. A final point which should be made relates to

the general discussion in Chapter 1. In practice the boundaries

between corrective, adaptive and perfective maintenance are

frequently ill-defined. In other words courts may in practice find it

very difficult to distinguish between legal copying for corrective

purposes and illegal copying for adaptive or perfective purposes.

This problem is not likely to go away in the near future.

In fact, copyright law now specifically allows for copying for the

purpose of error correction as evidenced by Section 50C for

example:-

“It is not an infringement of copyright for a lawful user of a copy of

a computer program to copy or adapt it provided that the copying

or adapting is necessary for his lawful use ... It may, in particular, be

necessary for the lawful user of a computer program to copy or

adapt it for the purpose of correcting errors in it.”

On the face of it, this considerably assists the user of flawed software.

However, in practice it is nearly useless, because it is rare for the

source code to be supplied with any system, so the user is critically

dependent not just on the supplier, who may well not have the

25 The plaintiff had apparently inadvertently left the source code on the defendant’s system.

LL.M. thesis, Les Hatton, 1999 Page 105

source code either, but on the original author who presumably

does26. In practice, source code access is supplied only through

frequently complex escrow agreements as discussed in Chapter 3,

and then usually only for the purposes of continuation of benefit

should the supplier cease trading.

There are further complications concerning what precisely

constitutes necessary copying which even experts might disagree

upon as have already been hinted at.

The central problem here is that the contract neither allowed for

appropriate acceptance criteria based on an agreed specification, nor for a

constructive recovery of the situation as is discussed in much more detail in

Chapter 4. Such occurrences are relatively common in software

engineering as evidenced by [14] for example. In fact, the defendants in

this case were particularly IT illiterate and failed to understand even the

distinction between on-line and batch software.

The problems with requirements generally here can be seen from the

words of Mr. Recorder Havery QC:-

“... The contract document does not describe the software, but is

common ground that the software in question is described in the

third and final draft of a system proposal ... Unfortunately, for

present purposes, the proposal was not designed as a legal

document; indeed it is not even a technical specification as that

expression is understood in the trade ... It became clear to m e

during the course of the evidence ... that the document is

ambiguous in its description of the software on page ...”

26 This presumes that the author developed the software under the aegis of a formalised Change and
Configuration Control System. However, as commented in Chapter 1, such an author is still likely to be in
the minority.

LL.M. thesis, Les Hatton, 1999 Page 106

St Albans City and District Council v. International Computers

Ltd. (1996)

Although this case appears rather similar in principle to the Saphena case,

(and Saphena was indeed quoted by the defence), closer analysis

suggests that they are quite different certainly on software engineering

grounds.

In essence, the defendant was invited to supply a system for the

computerisation of a number of areas of Local Government work to cope

with the requirements of the Local Government Finance Bill then

proceeding through Parliament. Included in this was a strict contractual

requirement:-

“to provide a firm commitment to supply a system to cope with all

the Statutory Requirements for registration, billing, collection and

recovery and financial management of the Community Charge and

Non-Domestic Rates; including Community Charge Rebates”.

It was further pointed out that some 16 data items were:-

“subject to addition/amendment as a result of the continuing

Parliamentary process”27.

In response to this tender, the defendant used a number of statements such

as:-

“To develop a system using a 70 strong development team, which

meets fully the legislative requirements, and which is easy to use

and operate”.

(The plaintiffs would have the opportunity) “to input into the

development process in order to be sure that this product meets

your specific requirements.”

27 This would be enough to set alarm bells ringing in any professional developer. It is difficult enough
writing software even when the requirements are not changing as a result of a party not privy to the contract.
In essence, change was uncontrolled. This was indeed tempting fate.

LL.M. thesis, Les Hatton, 1999 Page 107

In response to the plaintiff’s statement of user requirements, the defendant

stated:-

“The register will contain the data items necessary to meet at the

very least the legal requirements plus any other fields the User

Design Group deem advantageous. The system is planned to

handle all debits.

All other requirements will be met”28.

In essence, what happened was that a software fault caused the

relevant population to be miscounted, giving a value 2966 too high29. St.

Alban’s District Council therefore set the Community Charge based on this

artificially inflated population figure and received too little income as a

result, leading to a series of directly quantifiable losses.

The judgement

The court ruled unanimously for the plaintiff, although it reduced the

amount of damages by a sum which the plaintiff could recover anyway in a

later year in the normal course of local authority affairs. A term in the

contract limiting liability was deemed inadmissible as it was judged to form

part of the standard terms and conditions therefore falling under the

auspices of UCTA77. The Court of Appeal upheld the previous court’s

analysis that this clause was deemed not to be reasonable.

The details under which the appeal was in essence rejected are

worth repeating. Mr. Dehn QC acting for the defendants argued to the Court

of Appeal that the system would essentially be in a state of development

until its fully operational date of the end of February 1990. Thus, unless the

defendants had acted negligently, the plaintiffs had implicitly agreed to

28 In engineering terms, this is specifically not an advertising puff, but a clear commitment to satisfy
requirements which were not particularly onerous and would be precisely defined by an external statutory
agency.
29 The defendant’s software gave a population figure as 97,384.7. I must confess that any engineer seeing a
population estimate with a decimal place would begin to have serious concerns about the software
responsible. It is also worth noting that this is not a requirements fault at all. It appears to be a simple
logic fault, (c.f. [32] for more information on these categories).

LL.M. thesis, Les Hatton, 1999 Page 108

accept whatever software was supplied, bugs and all. Mr. Dehn relied on

observations of the Saphena case discussed above and specifically argued

that the defendant was not contractually bound to provide software which

could count properly on 4 December 1989 when a necessary return was

carried out by the plaintiffs.

This argument was rejected by the judges who ruled that the

defendant was under an express contractual obligation to supply the

plaintiffs with software that could enable them accurately to complete the

return by the required date of 8th December 1989. However, the most

interesting and perhaps portentous part of the judgement then followed

given by Sir Iain Glidewell. He was addressing the following issue. If there

had not been an express term breached, then was the contract between the

parties subject to any implied term as to quality or fitness for purpose, and if

so what was the nature of that term ? To answer this, he had to plunge into

the issue of whether software should be considered goods or services. This

point is taken up again in more detail in Chapter 4. However, Sir Iain

Glidewell’s arguments ran thus: If software is goods, it is subject to the

implied terms of SGA79. If it is services, it is not thus constrained. He

concluded that although a program of itself was not goods according to the

definition contained in SGA79 and SGSA82, he did not see how it could be

reasonably separated from the medium on which it was supplied, just as

erroneous instructions in a car maintenance manual could not be separated

from the physical medium of the manual itself. He went on to quote other

sources supporting this view.

To resolve this unsatisfactory position, he first concluded that there

was no statutory implication of terms as to quality or fitness for purpose but

went on to ask if the contract itself should contain an implied term as if it

were a contract for the supply of goods. For this he looked back in time to

the Common Law roots of SGA79 and asked the question, under what

basis is a court justified in implying a term into a contract in which it has not

been expressed. This basis is strict and was summarised by Lord Pearson

LL.M. thesis, Les Hatton, 1999 Page 109

in Trollope & Colls Ltd. v. North West Metropolitan Regional Hospital Board

(1973) as follows:-

“An unexpressed term can be implied if and only if the court finds

that the parties must have intended that term to form part of their

contract; it is not enough for the court to find that such a term

would have been adopted by the parties as reasonable men if it had

been suggested to them; it must have been a term that went

without saying, a term which, though tacit, formed part of the

contract which the parties made for themselves”.

Sir Iain Glidewell then continued by holding that a contract for the

supply of software transferred howsoever when intended to fulfil specified

functions fell into the category addressed by Lord Pearson’s words above.

In other words

“... in the absence of any express term as to quality or fitness for

purpose, or of any term to the contrary, such a contract is subject to

an implied term that the program will be reasonably fit for, i.e.

reasonably capable of achieving the intended purpose”.

Sir Iain concluded by saying that were the matter not resolved by the

express term, he would still hold that ICL were in breach of this implied

term. Tellingly, Nourse LJ had stated in his initial summing up:-

“... it becomes strictly unnecessary to consider whether the contract

was subject to an implied term to the same effect. However,

having had the advantage of reading in draft the judgement to be

delivered by Sir Iain Glidewell, I would, like him and for the

reasons he gives, have answered the question in the affirmative”.

In his judgement, Hirst LJ agreed with the judgement by Nourse LJ.

In other words, the existence of an implied term for quality and fitness for

purpose in a contract for the supply of software for specified functions

howsoever transmitted was unanimously agreed by this appelate court.

This is likely to be very influential indeed in cases where the software

LL.M. thesis, Les Hatton, 1999 Page 110

requirements are well-defined, particularly as the same thing happened in

the Saphena case discussed earlier although the term was not used in the

judgement.

Discussion

For an engineer, the court’s ruling seems entirely reasonable. the

defendant delivered a system with a software fault in it known as a “show-

stopper” in the trade. The requirements although not complete at the time

the contract was signed were well-defined and essentially specified by a

third party, in this case a statutory source. The fault caused a failure, the

nature of which led to a large quantifiable loss. This could have been

mitigated to some extent if the defendant had taken more care to inform the

plaintiff about the nature of the many software updates which were taking

place at the time. The degree to which testing was performed on this

intermediate release is unknown but such a gross error should have

yielded even to a relatively cursory series of tests. An attempt to limit their

loss was deemed part of the standard terms and conditions and was ruled

inadmissible on the grounds of unreasonableness.

Criticism

This section is only included for completeness. The ruling seems accurate

and reasonable. It was in every sense, ‘a fair cop’.

Compliance matrix

In this section, the key facts of the two cases will be compared side by side

in the form of a compliance matrix. A compliance matrix in essence

compares two or more objects, (columns 2 and 3 here) according to a set of

categories, (column 1). The degree of compliance, (column 4), is measured

subjectively using three independent categories as follows:-

POOR | AVERAGE | GOOD: The similarity between the two cases for

this item.

CONSISTENT | INCONSISTENT: Whether the judgements were

consistent.

LL.M. thesis, Les Hatton, 1999 Page 111

CRUCIAL: If present, this indicates that this item of compliance has a

fundamental part to play in understanding the differences

between the two cases.

Thus for example, the first item compares the nature of the plaintiff. In

Saphena, the plaintiff was the supplier and in the St. Albans ruling, it was

the user. Thus the nature of the plaintiff is quite different leading to a POOR

similarity, but the judgements in each case were not inconsistent with each

other, thus attracting the category CONSISTENT. The CRUCIAL key word

does not appear as the nature of the plaintiff is not of fundamental

importance in understanding the differences between the two cases.

We are looking for any AVERAGE or GOOD agreement between the

cases whereby the ruling was INCONSISTENT. These would be damaging

in understanding the cases. If a CRUCIAL item turns out to be

INCONSISTENT, this would be very damaging.

LL.M. thesis, Les Hatton, 1999 Page 112

Item Saphena St. Albans Degree of
Compliance
of Saphena

with St.
Albans

Plaintiff Software supplier with
case based on unfair
termination and
copyright
transgression

Software user with case
based on catastrophic
failure.

POOR
CONSISTENT

Type of problem After apparently
successful initial
installation, couldn’t
get it working - bugs,
delays, etc.

Single ‘show-stopper’ POOR
CONSISTENT

Nature of loss of
plaintiff

Lost opportunity +
copyright
transgression

Direct quantifiable loss POOR
CONSISTENT

Modification to
existing system

Yes. General
modifications

Yes. New module. GOOD
CONSISTENT

Quality of
specification

Apparently poor and
variable.

Pending completion of
statutory legislation, but
then good.

AVERAGE
CONSISTENT
CRUCIAL

Attitude to software
failure by court

Court ruled that
failures are inevitable
and the supplier
should be allowed to
make good if possible.
Court also ruled that
there was an implied
term that the software
should be reasonably
fit for its purpose, but
the term was deleted
by the defendant’s
acceptance..

Defendant quoted
Saphena, but court ruled
“Parties who
respectively agree to
supply and acquire a
system in development,
cannot be taken merely
by recognition, to intend
that supplier can supply
software which cannot
perform its function.
The court referenced the
requirements in
making this point”.

AVERAGE
CONSISTENT
Quality of
requirements
emerges as a key
issue.

Implied fitness for
purpose

Termination by
defendant deemed as
acceptance, therefore
fitness clause deleted.

Central in ruling POOR
CONSISTENT

Implied terms Excluded by
termination but
deemed in force prior
to that

Standard terms and
conditions deemed in
force, therefore cannot
exclude.

AVERAGE
CONSISTENT

Influence of ruling Court of Appeal Court of Appeal -
Goods v. Services Deemed irrelevant in a

strange decision,
although fitness for
purpose invoked.

Essentially irrelevant to
ruling but in a long
analysis, Sir Iain
Glidewell argued it to be
supply of goods.

POOR
IN-
CONSISTENT

As can be seen, there are no important inconsistencies between the

two cases, in fact on deeper analysis, in spite of the significant engineering

LL.M. thesis, Les Hatton, 1999 Page 113

differences between the two cases, there are important similarities in the

rulings. The most important of these in the author’s opinion is the

willingness of both courts to infer an implied contractual term that software

should be reasonably fit for its purpose even though the quality of the

software specifications in the two cases differed markedly. The fact that the

implied term was not applied in Saphena as it was deemed to have been

deleted by the nature of the termination does not materially affect this view.

Discussion

The poorly misunderstood state of software engineering in legal terms is

well illustrated by the attempts of the defence counsel in the St Albans case

to use the Saphena ruling to justify the presence of faults in his client’s

software. As we have seen, the two cases are very different in engineering

terms and in the Saphena ruling, the court’s acceptance that software can

be expected to be delivered with bugs in was strongly influenced by the

nature of the changing requirements. This was not a feature of the St.

Alban’s ruling.

As discussed in Chapter 1 and also Figures 1.10, 4.1 and 4.2, the

following kinds of software development are distinguished:-

Bespoke software development

This category is usually characterised by continually varying requirements

due to misunderstanding and unforeseen issues and, if successful, a slow

convergence to a system which satisfies both the supplier and the end user.

It may be developed from scratch or it may perhaps be a substantial

modification to an existing piece of software. The software described in the

Saphena case falls into this category. The court’s acceptance of the expert

witness opinion that:-

“Just as no software developer can reasonably expect a buyer to tell

him what is required without a process of feedback and

reassessment, so no buyer should expect a supplier to get his

programs right first time”.

LL.M. thesis, Les Hatton, 1999 Page 114

is entirely reasonable for such a system. (On the other hand, the court still

implied a term that the software should be reasonably fit for its purpose

even though this term was not used).

Modified software

In such a system, the requirements for the software are already specified by

a third party and some tailoring work of a related package is necessary.

Such requirements are usually specified rather more accurately than in true

bespoke software. The St. Alban’s case fell into this category even though

the legislation was not complete in the first instance, which immediately

separates it in engineering terms from the Saphena case. In the St. Alban’s

case this led inter alia to the ruling:-

“Parties who respectively agree to supply and acquire a system

recognising that it is still in course of development cannot be

taken, merely by virtue of that recognition, to intend that the

supplier shall be at liberty to supply software which cannot perform

the function expected of it at the stage of the development at which

it is supplied. Moreover, and this is really an anterior point, the

argument is concluded against the defendant by clause 1.1 of the

plaintiff’s statement of user requirements which, having referred

to the Bill that later became the Local Government Finance Act

1988, ...”

On the basis of this, the defendant’s reference to Saphena was

rebuffed. The author would disagree only in the sense that the reference to

requirements is not anterior. Indeed it is fundamental to the relevance of

the rulings. Once again, it can be seen that the court found an implied term

that the software should be reasonably fit for its purpose.

COTS (Commercial Off The Shelf)

COTS software is something which the supplier themselves has specified,

often without consulting any potential users at all, implements and then

markets in the hope that the product will be sufficiently appealing that it will

LL.M. thesis, Les Hatton, 1999 Page 115

sell. In engineering terms it is rather different from the previous two

categories and legally it may be very different. Trying to interpret the

Saphena and St. Albans rulings for this category is by no means clear,

although if we follow the requirements principle, neither of the rulings are

applicable. It seems likely that this category has the greatest claim to be

considered as goods although this will be discussed further below. If it is

considered as goods, then once again, although this time for statutory

reasons, the software would be required to be reasonably fit for its purpose.

In fact, this is a good reason to treat COTS software as goods as the three

different kinds of software development would then be treated similarly

even though the rulings would be arrived at in different ways.

The key to understanding these two cases from an engineering as

well as a legal point is the nature of the requirements placed upon the

computer supplier. In the Saphena case, they were ill-defined and variable,

although this was not tested as the defendant in that case terminated early.

It is reasonable to view the court’s ruling as to whether one should expect a

product to be delivered with fault, as being based on the quality of the input

requirements. Even then, the court ruled that fitness for purpose was

implied. In the ICL case, they were much more clearly defined and subject

to a third-party, and in this case statutory agency, and the court ruled that

there could have been no agreed intention to deliver something which did

not function as required. This was expressed as a breach of an express

contractual term, but the court again made the point that there was an

implied term for quality and fitness for purpose in such a contract. In other

words, there was a clear criterion for “did not function” here, notably, that the

software failed very expensively with an obvious quantifiable loss to the

plaintiff. That the failure was nothing to do with requirements in engineering

terms is irrelevant.

These rulings however, reasonable as both seem, greatly increase

the risk to software developers in the author’s view, if the software

LL.M. thesis, Les Hatton, 1999 Page 116

requirements are well defined. Only if the requirements are not so well

defined does the Saphena ruling seem appropriate. It is interesting to

speculate what would have happened in the Saphena case had the

defendant not terminated the contract, thereby deeming to have accepted

the software, and leading to the implied term of fitness for purpose being

deleted.

The general point in this detailed comparison of existing influential

cases along with the essential but as yet untested case for COTS software

is this however:-

Courts consider that reasonable fitness for purpose for software is

appropriate whatever its origin and are very happy to imply it where

necessary under the two accepted methods, i.e. to give a contract business

efficacy or when it must have been unconscionable to parties privy to the

contract that software could reasonably be delivered when not fit for its

purpose.

LL.M. thesis, Les Hatton, 1999 Page 117

Chapter 4: Bridge building:- issues worthy of further
discussion

In any appraisal of software from a legal point of view, it becomes

immediately obvious that there are a number of particularly thorny issues.

Software has been specifically addressed in legal affairs in a number of

ways, for example, through the medium of case law on civil matters, through

copyright, through criminal acts and delictual responsibility, using analogies

with issues inter alia, in maritime law. The appearance of references to

software in these very different areas invites and ultimately will demand a

holistic view with the intention of finding a consistent and coherent

viewpoint.

The first thorny issue to discuss follows on appropriately from the

words of Sir Iain Glidewell in St. Albans v. International Computers Ltd. as

described in the previous chapter.

Software as Goods or Service

As has been seen earlier, a recurrent theme in much legal discourse on

software is the ‘goods v. services’ issue. To recap, the reason for this

discussion is that goods and services are treated differently in statute and

therefore it would seem important to determine which of these is

appropriate for the essentially intangible nature of software. This point will

be discussed according to a number of legal perspectives.

To recap, the sale of goods is covered by the 1979 Sale of Goods Act

(SGA79) and the modifications inherent in the 1994 Sale and Supply of

Goods Act (SSGA94). Under s. 14 of SGA79, the supplier is required to

supply software that is of satisfactory quality and reasonably fit for the

purpose the buyer has made known to him. If the buyer has not made

known any particular purpose, then the fitness for purpose will be assessed

by the courts in relation to the common purposes for which software of that

type is generally purchased. In addition, the 1979 Sale of Goods Act

provides for certain implied terms. For example, that the supplier has the

LL.M. thesis, Les Hatton, 1999 Page 118

right to sell which can be excluded, and that the goods are of reasonable

quality and comply with their description which either cannot be excluded at

all if the buyer is a consumer, or will be subjected to a test of

reasonableness according to the 1977 Unfair Contract Terms Act, if not.

However, we should note that goods are defined as personal chattels and

are tangible. For software, at most the medium of transfer is tangible, and in

the case of transfer by electronic means such as an Internet download, not

even that. By this definition, it is unrealistic to classify software as goods

even though COTS software bears all the hallmarks of a sale of goods and

this has led to an unnatural and essentially irrelevant focus on the quality of

the medium on which the software is supplied, for example, the floppy disc

or CD.

In contrast, services are supplied under the auspices of the 1982

Sale of Goods and Services Act, (SGSA82). for which there is only a

requirement for reasonable quality, which can only be excluded subject to a

test for reasonableness. This would seem a far less onerous requirement

on the supplier and leads to the legally acceptable notion that ‘a surgeon

does not warrant to save the life of his or her patient’. For bespoke software

where nothing tangible is delivered and the user is instrumental in defining

what it is to be delivered, it seems likely that this is a provision of a service.

Some authors (for example, Smith in [28], p 77) have commented that the

application of the ‘substance of the contract’ test used by the Court of

Appeal in Robinson v. Graves (1935) 1 KB 579 could result in the

conclusion that a bespoke software development contract is a contract for

services alone if no materials are transferred. Alternatively it is one for work

and materials, the major component of which is work on the grounds that

the work involved in developing a piece of software far outweighs the cost

of the medium on which it is supplied. It seems to me that this view, based

on a decision made at a time when the idea of doing huge amounts of work

and supplying nothing material was novel to say the least, is simply too

remote to be useful. Amongst other things it neglects the fact that true

LL.M. thesis, Les Hatton, 1999 Page 119

bespoke development whereby a piece of software is crafted from nothing

and handed over such that none of the experience or source code is ever

used again is rare to the point of practical non-existence. The author has

never heard of such a development in 25 years in the computing industry.

Note that the author used the word ‘experience’ here. It should never be

under-estimated just how much value is contained within the experience of

developing a software system. It is probably true to say that the experience

of developing such a system is at least as valuable as the source code

which was actually delivered. If this seems an outrageous statement, the

reader might like to consider the following factors. First of all, as illustrated

in Figures 1.3 and 1.4 in Chapter 1, software engineers typically spend far

more effort on a system after it has been delivered than before, (about a

factor of 4). Much of this effort is because the development of an essentially

new system is a prodigious learning experience characterised by many

mistakes. On the contrary, re-creating a system a second or subsequent

time is dramatically easier30. Software engineering is sufficiently immature

that most of the effective training that software engineers get arises from

practical experience and not from any formal education.

Finally, it is almost certainly true to say that the time taken by engineers to

re-create source code for an application in which they are experienced is

comparable to the time taken for an engineer inexperienced in that

application to understand an existing piece of source code for that

application.

Since there is a software continuum between COTS and bespoke

development in terms of both requirement specification and user interaction

with development as illustrated in Figure 1.10, it is inevitable with the

current legal interpretation of COTS software as goods and bespoke

30 Providing the ever-present trap of adding a wealth of new features is avoided of course. It has long been
known, ([26]), that in this case the second system is often worse than the first because ambition generally
overreaches capability. The third system is usually the best and this is known as the third-system effect. If
the lure of enhancement is ignored however, all subsequent systems benefit immensely from the mistakes
encountered building the first.

LL.M. thesis, Les Hatton, 1999 Page 120

software as services, that there is a corresponding legal continuum

between goods and services when dealing with software, as illustrated by

Figure 4.1.

Degree to which user requirements used in software development

COTS Modified Bespoke

Insignificant Instrumental

GOODS SERVICES

Figure 4.1: The continuum of types of software tentatively associated with the legal
concepts of goods and services.

Given the rather different nature of implied quality between the two,

this seems undesirable to say the least and is likely to lead to substantial

problems of interpretation in the future which expert witnesses are unlikely

to be able to resolve owing to the immature nature of software engineering.

There is already evidence that this is occurring in that in all cases so far

considered, the courts have assiduously avoided the subject and have

effectively said that they are interpreting the provisions of a particular

contract between the parties rather than the meaning of a statute. The

situation is not unlike the wave v. particle duality of light argument which

has persisted for most of the last 300 years. Is light a wave or is it a particle

? The answer is that it is both depending on how you look at it. This is

clearly unacceptable for a legal position given the significantly different

requirements laid down for the two extremes.

To give some idea of the interpretations which could arise in this grey

zone between services and goods, the words of Hilbery J in Marcel

LL.M. thesis, Les Hatton, 1999 Page 121

(Furriers) Ltd. v. Tapper (1953) 1 WLR 49, in a case concerned with the

supply of a fur coat will be quoted:

“I cannot discover anything to distinguish it from the case of an

ordinary article which it is part of someone’s business to supply

and which the person has to make to special measurements for the

customer. It requires skill, labour and materials of course, but the

purpose of the transaction is the supply of the complete article for

the price.”

These are powerful words and particularly relevant to the provision of

software which is to a certain extent tailored for the customer. This kind of

tailoring using existing components in great part, a software equivalent of

Lego™, is now overwhelmingly common and is viewed as a significant aim

in bespoke systems partly because it allows a product to be delivered

earlier and with less risk, (and at greater profit it is fair to say). This

quotation is really leaning towards the fact that software which is

predominantly component based with an element of bespoke modification,

is really goods.

Given these words and other comments made above, there seems to

be two ways out of the dilemma of categorising software as services or

goods, both of them relatively radical. Either software can be categorised

sui generis, i.e. as something new being neither goods nor services or it

can be categorised as either goods or services irrespective of the nature of

its development. There is some legal precedent for this latter view in both

English and Scottish Law. Sir Iain Glidewell in the English case St. Alban’s

v. ICL, 1996 as discussed in detail in Chapter 3, devotes some time to

discussing this issue arguing cogently that software be considered as

goods, although he readily admits the difficulties. The unnatural obsession

with the nature of the physical medium rather than its content could lead a

supplier to argue that the goods provided are only the disc and that only its

quality is therefore relevant. However, the buyer pays substantially more for

the disc containing the software than he would for a blank disc alone, so it

LL.M. thesis, Les Hatton, 1999 Page 122

must contain something of value. Worse, this argument would be

inconsistent with other influential rulings in different areas of the law. For

example, in Cox v, Riley (1986), the defendant had erased programs from a

magnetic medium and claimed in his defence that he had not damaged the

medium itself. This was rejected by the courts which found that he had

damaged the ‘card as programmed’ and that this was property for the

purposes of the 1971 Criminal Damages Act. There is no doubt whatsoever

here that the courts considered the damage of an intangible object as the

damage of property. Any other decision would have invited very adverse

comment and created a very unhealthy precedent. As it is, it is hoped that

this case creates an important and healthy precedent.

The notion of software being considered sui generis also emerged in

the well-known Scottish ‘shrink-wrap’ case of Beta Computers (Europe) v.

Adobe Systems (Europe) Ltd. SLT 604 (1996). Here the judge albeit

invoking a legal principle not relevant to English Law31 indicated that a

contract for the supply of software was sui generis (i.e. a contract of unusual

and unique nature) rather than one for goods or services.

Separating the content from the medium by claiming that the goods

only referred to the disc and not the software would also lead to problems

with the established understanding of copyright. Software is unequivocally

associated with copyright through the auspices of the 1988 Copyright,

Patents and Designs Act. If the supplier claims that goods only applies to

the medium and this is clearly the intent of many contracts originating in the

U.S32, then the supplier should not object to the disc being copied without

31 The rules to be implied in contracts (i.e. in the absence of express terms) are broadly similar in Scotland
and England and are described in more detail in Chapter 3. However the sections on implied terms to use
reasonable skill and care and provide services on time under SGSA82 do not apply in Scotland (it is a
common misconception that they do), although a similar term will be implied by Scottish courts at common
law leading to the same result. It should also be noted that it is not unknown for defects in software to take a
long time to manifest themselves. A tragic example of this occurred in the Therac-25 incident discussed in
Chapter 1 whereby it took the presence of a new defect to cause an old defect previously hidden for years to
fail.
32 Phrases such as the following are common:- a) The software house warrants only that the medium is free
from defect., b) that this warranty is in lieu of all liabilities, express or implied, whether by statute or

LL.M. thesis, Les Hatton, 1999 Page 123

restriction. However, the very same contracts profoundly object to this.

Another example can be found in the treatment of the European Patent

Office of an ‘image’, [28]. Although the Board talks of an image as a

‘physical entity’, and as a ‘real-world object’, it is made clear that an image

stored in any form, hard-copy or electronic, will be regarded as a physical

entity. Given the comments made in an earlier section on digital

convergence and the very close association of digital information all kinds,

once again consistent interpretation suggests that the medium be

considered irrelevant.

Another example wherein there has been recognition of the

independent existence of software can be seen in the words of Aldous J in

a patent application case, Wang Laboratories Inc.’s Application (1992) RPC

463 when addressing a claim concerning an expert system.

“The machine, the computer, remains the same even when

programmed. The computer and the program do not combine

together to produce a new computer. They remain separate and

amount to a collocation rather than a combination making a

different whole. The contribution is, to my mind, made by the

program and nothing more.”

The last sentence should particularly be noted. The Judge is

obviously in no doubt as to the existence of the program as a separate

entity.

Before leaving this point, an argument which further strengthens the

notion that software has an existence quite distinguishable from the

medium on which it is transferred will be developed. Software is frequently

sold in a licensed form with a licence key which allows the software to work

correctly. Some licence keys are physical and are called ‘dongles’ (for

some unknown reason). Without the licence key, the software is useless.

Supposing someone purchases a copy of a piece of ‘dongled’ software.

otherwise, c) that liability is limited to replacement of defective media and d) no liability is accepted for

LL.M. thesis, Les Hatton, 1999 Page 124

Supposing further that the purchaser then copies this on several different

pieces of media. On some of these media, for example a programmable

read-only memory or a ‘write-once’ CD-ROM, there are irreversible physical

changes to the substrate. However, there is still only one licence key and

therefore only one copy. If software is not protected, each copy is a valid

copy. In other words, whether a software copy is a copy or not is completely

unrelated to the media on which it is stored. There is absolutely no doubt

whatsoever that a computer program is a separate entity and this should be

universally recognised.

To make one final point, it has already been seen in Chapter 3 that

courts are very willing to infer reasonable fitness for purpose in existing

rulings whatever the source of software. Since, from the point of view of

software anyway, this is one of the central differentiating factors between

treating software as goods or services, it can be taken as a willingness to

treat software in a currently similar way to goods.

To summarise the above comments, the nature of software is such

that to be consistent with copyright, criminal damages and other legislation,

it appears necessary to define it as goods whatever the nature of its

development. This may be a controversial statement but it is entirely

consistent with Sir Iain Glidewell’s view and there is absolutely no question

that computer scientists consider software a tangible asset, as evidenced by

the importance attached to the mechanism of re-use , whereby previously

developed components are used again and again as the prescient

comments of Hilbery J. quoted above foresee. It is much harder to

understand how you would re-use a service, without repeating the work

effort. This is manifestly NOT true with software.

In spite of the examples quoted above, simply including software

within the remit of goods by some future statutory instrument is not without

difficulties however as can be noted from the wording of the 1994 Sale and

consequential loss.

LL.M. thesis, Les Hatton, 1999 Page 125

Supply of Goods Act, which states in s. 2b) that the quality of goods

includes such factors as:-

a) fitness for all purposes for which goods of the kind in question

are commonly supplied

b) appearance and finish

c) freedom from minor defects

d) safety, and

e) durability

It is very unlikely in the entire history of computer science that any

significant piece of software has been delivered which satisfies c) above.

This may support the argument that software should form part of the Sale of

Goods Act but perhaps sui generis. At least two ‘dark corner’s however, will

have to be addressed. First, the identical nature of software copies means

that software copies can never be ascertained as was discussed earlier in

the section on ownership and risk. Second, the problems associated with

the engineering benefits of incremental delivery against the fact that the

customer does not have to accept goods delivered by instalment, s. 31(1),

SGA79, will have to be resolved.

From the buyer’s point of view, until a clearer policy emerges

perhaps by considering software uniformly as goods, for any other than

pure COTS software there is therefore a clear inducement to specify the

product carefully in the contract, including detailed acceptance criteria and

also to be satisfied that the supplier is capable of producing such a product,

which is by no means a foregone conclusion as can be seen by the

discussion in Chapter 1. From the supplier’s point of view, there needs to

LL.M. thesis, Les Hatton, 1999 Page 126

be a satisfactory way of limiting liability for an unavoidable33 failure of a

clearly-defined system, recognising in the aftermath of the St. Albans v. ICL

(1996) ruling that if a bad defect leads to substantial quantifiable loss, then

it may be very difficult to avoid liability. On the other hand, if this is to

become the standard ruling, then software is going to become a lot more

expensive, particularly in the year 2000 when software failure is likely to

become a very serious issue for society in general.

Finally, it should be noted that for pure COTS software, there is

simply no legal precedent in UK law at present and therefore no clear

guidance, although of the categories discussed here, this seems most likely

covered by existing legislation under SGA79 and SSGA94.

Following on from the above discussion, it is tempting to suggest that

attempts to resolve legal cases based on statutes involving goods and

services is doomed to failure at present and it is not surprising that the

courts have shied away from doing so. To conclude, this is because of the

difficulty of accepting precisely where on this continuum a particular piece

of software lies, other than perhaps at the extrema, a situation exacerbated

by wide variations in expert opinion as discussed in Chapters 1 and 3 for

example. This simply emphasises the continuing importance of contract in

resolving such issues as has already been seen in St. Albans v. ICL (1996)

and Saphena Computing v. Allied Collection Agencies (1985).

Adding Delictual Liability to the Spectrum

At the time of writing, no software related case in English Law had been

decided in the courts. This has led to a large number of so far hypothetical

arguments as to the precise nature of this liability and a comprehensive

summary of these can be found in chapter 3 of [28]. The basic legal

principles of delictual liability have already been discussed in Chapter 2.

However, the discussion on p. 96 of chapter 3 of [28] clearly implies that

there is a progressive duty of care between the two opposite ends of the

33 A wide class of failures in software are unavoidable, [33].

LL.M. thesis, Les Hatton, 1999 Page 127

software spectrum. This progressive duty of care reflects the closer

relationship present in Bespoke systems whereby the customer usually

makes a substantial contribution to the definition of the requirements. The

higher duty of care owed in a Bespoke development reflects the decision in

Hedley Byrne & Co. Ltd. v. Heller & Partners Ltd (1964). A medium duty of

care owed to a modified system is reflected in the decision in JEB Fasteners

Ltd. v. Marks, Bloom and Co. Ltd. (1983). A low duty of care at the COTS

end would correspond to cases where the proximity of the relationship

failed the tests described in these two cases. An important element in

deciding the proximity question appears to be the purpose for which the

advice was produced. For example, in Caparo Industries plc v. Dickman

(1990), the House of Lords held that the company’s auditors owed no duty

of care to the shareholders in respect of the accounts because investment

was not the purpose for which the accounts were produced, even though it

was foreseeable that they would be used for such a purpose.

In contrast, the strength of statutory requirements goes in the

opposite direction with those pertaining to Goods being significantly

stronger than those for Services as described earlier in this Chapter. This

invites us to extend Figure 4.1 as shown below in Figure 4.2

LL.M. thesis, Les Hatton, 1999 Page 128

Degree to which user requirements used in software development

COTS Modified Bespoke

Insignificant Instrumental

GOODS SERVICES

Duty of care

Strength of statutory requirements

Figure 4.2: The continuum of types of software tentatively associated with the legal
concepts of goods and services with the delictual concept of “duty of care” added and the
respective strengths of statutory requirements.

Here “duty of care” and “strength of statutory requirements” axes

have simply been added to Figure 4.1. There is therefore a clear

relationship between the computer science issue of the degree to which

specification of user requirements has been used and the legal issue of

deciding the duty of care. It is also interesting to note that the law has

evolved to be self-balancing. As the statutory requirements weaken, there

is a correspondingly higher duty of care under delictual liability.

Given the general and continuing difficulties which computer scientists

experience with the specification of requirements, it is tempting to speculate

that the appropriate duty of care will be also very difficult to decide if a case

involving delictual liability reached the courts. The corresponding legal

simplification is another argument in favour of deciding that software is

always of a particular category.

At what time is software deemed to be of satisfactory quality ?

This too seems on the face of it a particularly vexed issue with software.

Historically in the UK, goods are deemed to be of satisfactory quality at the

LL.M. thesis, Les Hatton, 1999 Page 129

point of delivery, although under SGA79, there is an implied term of

merchantability which was replaced by a requirement for satisfactory quality

in SSGA94, and the fact that software does not deteriorate could sustain a

purchaser’s argument that a defect occurring some time later must have

been in the product at the point of delivery, potentially breaching this

implied term. This is assuming that the purchaser does not ‘amend’ the

code. Even so, if the time elapsed before reporting the defect was

sufficiently long, it might be argued by the supplier that the purchaser had

had full value.

The implication of deeming goods to be of satisfactory quality at the

point of delivery of course is that even with complex consumer items like

cars, minor defects discovered a couple of weeks later do not constitute

grounds for rejection, although of course, there is an obligation on the

supplier to correct them. The words of Mr. Recorder Havery QC in Saphena

Computing Ltd. v. Allied Collection Agencies Ltd. may be noted:-

“In the present case, on the other hand, once the software is fit for

its purpose it stays fit for its purpose. If by any chance, a flaw is

discovered showing that it is unfit for its purpose (which is hardly

likely after prolonged use) there is a remedy in damages against the

supplier, if solvent, until the expiry of the period of limitation.”34

As consumer products become more and more complex, this will

become a correspondingly more difficult issue to resolve, indeed most

delivered software is now of such complexity that for any other than COTS

software, it is wholly unreasonable to expect a user to accept it

unconditionally on delivery, when it is most unlikely that not only the

supplier will understand in full the actual functionality but the developers

also.

34 In the light of Chapter 1, we can however criticise this in a number of ways. First, software can easily be
deleteriously affected by future updates and second, flaws can indeed arise after a very substantial time.

LL.M. thesis, Les Hatton, 1999 Page 130

What is a reasonable time ?

How do products fail and what is a reasonable time between failures from

the point of view of the end-user ? There are a spectrum of answers to this

question with different end-users rights as exemplified in Diagram 4.3

0 A C

Time

B

Diagram 4.3 Times of interest to the purchaser of a product. At time 0, the product is
delivered to the end-user. Time A is not well-defined and is the end of the period in which it
is legally correct to return a faulty product. Time B is the time at which a product is accepted
either explicitly or implicitly by the end-user. If it is implicit through some act which is
considered inconsistent with the supplier retaining ownership, it may not be well-defined
either. Time C is the end of the warranty period and is the maximum of the statutory and
supplied warranty periods. These times obey the relationship 0 < A < B < C. After C, it would
be assumed that the purchaser had had full value even though the product would typically
continue in use for some considerable period afterwards.

In product failure, there are two perspectives, the supplier’s and the

purchaser’s and they are very different.

 The supplier’s perspective of product failure

Consider the manufacturer of a mass-produced consumer item such as a

car or a video-recorder. Over the past fifty years, manufacturing process

improvements based on the notions of Statistical Process Control have

inexorably improved the average quality of many consumer items. Cars for

example are dramatically more reliable than they were only 20 years ago.

Hard disc drives are another example of the dramatic progress which has

been made. Only 15 years ago, such a drive had a mean-time between

failures of around 100-1000 hours. Today, for £100, it is possible to buy a

disc drive with approximately 100 times the capacity with a mean time

between failures of 1,000,000 hours, or 1000 times more reliable. One of

the measures of manufacturing excellence today is known as six sigma

LL.M. thesis, Les Hatton, 1999 Page 131

quality, which corresponds to a manufacturing process which produces only

around 3 defects per million items. Suffice it to say, that it is difficult to fault

many manufacturers of consumer items on the grounds of reliability. For a

very reasonable price, the public today has access to a level of

manufacturing quality which engineers of only 20 years ago would not have

dreamed.

 The purchaser’s perspective of product failure

Of course the purchaser has an entirely different perspective. When their

product fails, it is the worst thing in the world. It is of no comfort to know that

in the case of many manufactured items today, they are literally one in a

million. The fact of course that so few manufactured items fail makes it very

easy for a supplier to be generous and exceed statutory requirements by

replacing the offending item without complaint throughout the warranty

period, (up to time C in Figure 4.3) and in some cases long afterwards. The

goodwill this buys comes cheap because it doesn’t happen very often. Of

course with an expensive product such as a car, a manufacturer is much

more likely to try and mend it first but even replacement is not really a

problem if such failure does not occur very often. The commercial world is

so competitive that manufacturers of consumer items cannot afford to

alienate customers.

 Does it matter that software faults have always been present ?

We now turn to software. Here we have a product which has not yet been

subjected to fifty years of Statistical Process Control and which is

consequently much less reliable. However, cars breaking down fifty years

ago were not greeted by a spate of litigation and nor should software today.

Its immature status in spite of the huffing and puffing of software producers

and the impenetrable jargon should be recognised. What is fundamentally

different of course is that it does not wear out - any defects discovered have

always been present. This point is often considered significant, but it is not

really as the following argument reveals.

LL.M. thesis, Les Hatton, 1999 Page 132

Just like any population of consumer products, a certain number of

copies of software will fail within a given period. In one case, Bernstein v.

Pamson Motors (Golders Green) Ltd., the emergence of defects three

weeks after delivery of a car was not deemed sufficient cause for the

rejection of the product as the car had then been accepted. The discovery

had come too late. Supposing now we have a population of 125,000

copies of software in continuous use. Now consider a rare class of defect

which occurs only about once every 5000 years of use. Such defects are

exceptionally difficult to remove during software testing so most if not all

software products will contain them. However, in a population of 125,000

copies in continuous use, one such defect will occur about every two

weeks. From the point of view of the purchaser, this is extremely serious of

course but it represents an exceptionally unlikely scenario in general terms

and it is probably not a defect which a producer could reasonably be

expected to fix. The fundamental difference is that all copies of software are

identical so all 125,000 would typically have failed the same way given the

same external set of circumstances. In other words, software failures tend

to be far more systematic than normal product failures. Is this sufficient to

fuel a legal distinction ? In the author’s opinion it is not, simply because

conventionally engineered items also suffer from this problem. For

example, marching troops are invariably required to ‘break step’ when

crossing a bridge because even after several thousand years of bridge

building, bridges are still susceptible to certain kinds of harmonically

induced failure, (the Tacoma Bay Narrows suspension bridge collapse in

the U.S. some years ago was a graphic reminder).

In other words, the fact that defects have always been present and that all

copies fail the same way is not sufficient grounds for a legal distinction

between software and other products. Bridges amongst other things share

some of the same properties.

It is important to recognise this formally for this reason. The trend to

increasingly more reliable consumer items which has held for the last fifty

LL.M. thesis, Les Hatton, 1999 Page 133

years is now being challenged by the increasing amounts of fundamentally

less reliable software now included in most consumer items as evidenced

by the telephone answering machine described in Chapter 1. This should

not lead to a different legal regime, unless it can be shown that the software

developer concerned was fundamentally negligent in their design and

production of the software and this point is discussed elsewhere in this

thesis. This issue is likely to prove the most contentious. If software like a

word-processor fails, returning the product is trivial and costs the supplier

nothing except loss of revenue of the product if the purchaser rejects it. If

software embedded in the braking system of a car fails, this is altogether a

more expensive issue as evidenced by the author’s own experiences as

described in Chapter 1.

It would seem therefore that the issue of when a software product is

delivered and more importantly when it can be rejected is not so different

from normal consumer products. With normal goods however, the law and

the purchaser have generally got used to the idea that things can be fixed

given time and money.

However with the best will in the world, this is manifestly not true with

certain classes of software defect so in the author’s opinion there should be

some kind of legal proviso based on a sui generis view of software that if

serious software-related defects occur embedded within a consumer item

and they cannot reasonably be corrected by the manufacturer, that rejection

of goods should be allowed on the grounds that the defect has always been

there. Note that this is not a matter for tort and the requirement to show that

the supplier was negligent. Such defects can escape the best suppliers in

the world.

This argument of course represents the COTS end of the spectrum.

What about the bespoke end of the spectrum ? Here we are faced with a

number of daunting statistics highlighted in Chapter 1. First of all,

somewhere between 75 and 90% of all software projects fail to deliver their

LL.M. thesis, Les Hatton, 1999 Page 134

intended functionality. Those that do succeed are accompanied by an

inordinate amount of additional work after delivery known euphemistically

as maintenance as indicated in Figures 1.3 and 1.4 in Chapter 1. How long

after delivery should rejection be allowed in this case ? This may be a very

difficult question to answer although it seems reasonable that it should be

rather longer than the time allowed for products. This is precisely one of

those areas which the author is sure the courts would be reluctant to

comment upon and on which software experts are most unlikely to come to

any form of agreement. The supplier and purchaser of bespoke software

should therefore concentrate most carefully on contractual solutions as

described later.

Assessing best practice in software engineering

As a general guide to the legal reader, this section attempts to define

aspects which would be considered best practice in a software

development environment. Some reference will be made to these in

desirable contractual requirements discussed in the next section.

Perhaps the most significant step forward towards this goal in that it

was underpinned by measurement unlike so much of what we do in

software engineering, is the Capability Maturity Model (CMM) of Carnegie-

Mellon University in the U.S., [24]. This model emerged as a result of the

very high rate of failure reported in data such as that shown in Figure 1.8 in

Chapter 1. The CMM effectively categories software engineering

environments in 5 levels of decreasing quality or maturity as follows:-

LL.M. thesis, Les Hatton, 1999 Page 135

Level Characteristic Key Challenges

5

Optimising

Improvement fed back into the
process

• Still human intensive

• Maintenance of optimisation

4

Managed

(Quantitative)

Measured Process

• Changing technology

• Problem analysis

• Problem prevention

3

Defined

(Qualitative)

Process defined and
institutionalised

• Process measurement

• Process analysis

• Quantitative quality plans

2

Repeatable

(Intuitive)

Process dependent on
individuals

• Training

• Technical practices

• Process Focus

1

Initial

(Ad hoc / chaotic) • Project management

• Project planning

• Configuration management

• Software quality assurance

Table 4 The basic structure of the Carnegie-Mellon Capability Maturity Model for software.

The model is incremental, so that in order to move from one level to

the next higher, the deficiencies at that level must be removed. For

example, the priorities for a level 1 company to address before it can move

to level 2 are project management, project planning, configuration

management and software quality assurance. These are expanded upon

and re-ordered in Table 5:

LL.M. thesis, Les Hatton, 1999 Page 136

Standards and Procedures Formal Project Management System to cover planning,
estimation, scheduling and tracking.

Formal Information Strategy Planning

Formal Data, Process and Interaction Modelling

Data Administration

Prototyping

Regression Testing

Organisation Software Quality Assurance Function

Staff Training Programme to support standards and
procedures.

Tools and Technology Systems planning, analysis and design support

Project Management support

Source code configuration management system

Data dictionary if applicable

Regression Testing support

Process Metrics Collection and analysis of code error and test efficiency
measurements

Table 5 The priorities which must be addressed in a level 1 company wishing to get to level 2
of the CMM.

These can be compared with the equivalent challenges facing the

level 2 company wishing to move level 3 shown in Table 6:

LL.M. thesis, Les Hatton, 1999 Page 137

Standards and Procedures Defined Software Development Process

Risk Management

Inspections and Walkthroughs

Testing Standards

Design Level Maintenance

Quality Management

Organisation Software Engineering Process Group.

Tools and Technology CASE strategy

Requirements traceability

Process Metrics Collection and analysis of life-cycle metrics.

Table 6 The priorities which must be addressed in a level 2 company wishing to get to level 3
of the CMM.

The CMM initially takes the form of a questionnaire. This should be

filled out independently by both programming staff and management

because in the author’s experience, there are frequently dramatic

LL.M. thesis, Les Hatton, 1999 Page 138

variations35. These are due essentially to over-optimism as to what can be

achieved by programming management, and undue pessimism by

programming staff who are frequently ignorant or dismissive of what has

been achieved within the organisation. The results must therefore be

analysed carefully. When inconsistencies have been resolved, the results

give a good idea of the level and key deficiencies remaining and perhaps

most importantly, different trained assessors will produce consistent

evaluations. The author has carried out this exercise frequently although

mostly on level 1 companies which are generally easy to improve.

The CMM has many intuitively attractive features which is perhaps

not surprising given its strong empirical lineage. Perhaps its most intuitively

appealing aspect is its incremental nature. This is in stark contrast to ISO

9001 which an organisation satisfies or not, and after which, there is no real

guidance as to what the next quality steps should be. In the CMM, there is a

clear set of objectives with well-defined problem areas to be solved at each

stage. In particular, it illustrates that balance is crucial to an organisation's

performance. There is no point trying to optimise a deficient process. Even

quite recently, of the safety-related companies with which the author has

dealt, configuration management was often a problem. This has led to

extreme situations such as were described earlier when an automated code

audit against standards had to be carried out on site because the company

concerned were unable to deliver all the required source code components

after several attempts. Furthermore, more than half of the safety-related

companies with which the author has dealt were deficient in project

management. This is a very dangerous deficiency as it invariably leads to a

rush at the end of a development project in order to meet a deadline which

has always been unrealistic. Quality cannot help but suffer, usually

terminally, in such circumstances.

35In one company which I encountered, 80% of the questions received a yes from a software manager, in
contrast to about 20% from a programmer working in the same group, when filling out the questionnaire
independently.

LL.M. thesis, Les Hatton, 1999 Page 139

[24] found that perhaps 81% of all companies audited were at level 1

with around 12% at level 2 and around 7% at level 3. At the time of writing,

there were no companies known at level 5 although one or two software

groups are believed to operate at this level. This highlights a further

deficiency of the CMM, viz. there is so little data at levels 4 and 5 that it is

difficult to define them adequately. It is important to note that Humphrey,

after extensive research, believes that at least 1-2 years is necessary to

graduate between each level, so climbing the CMM ladder represents a

major commitment in resources and could be expected to take 10 years.

The problem of so many companies being at level 1 has been resolved in a

somewhat tongue-in-cheek manner by [34], who proposed a software

process immaturity extension of the CMM model to include level 0 (foolish),

level -1 (stupid) and level -2 (lunatic). Although the descriptions are highly

amusing, the author has seen examples of each level in real life.

In spite of the immature state of process assessment, a great deal of

progress has been made in this area in the last 10 years and assessing

best practice using such models as the CMM is a well-defined activity for

which formal training exists.

The CMM is not the only software process quality assessment that

can be done. Sufficient is now known about the defect injection rate of

software processes that good comparisons can be made and reasonably

objective statements made about the standard of care used in a project.

This is clearly relevant to any assessment of delictual responsibility.

Implications for software contracts

Perhaps the most important point to make is this:-

As has been seen above, the uncertain nature of software from a legal point

of view is a very significant contributing factor to the current state of affairs

that all cases so far decided under English Law have been decided under

the Law of Contract. Furthermore, as we have seen in Chapter 1, it is the

rule rather than the exception that software projects fail to deliver what their

LL.M. thesis, Les Hatton, 1999 Page 140

intended users require. In normal life, contracts are essentially written not

to be used and the overwhelming number are not. In software projects, the

opposite holds. It is very likely that they will be used and so as much care

on them should be lavished as possible, particularly from the customer’s

side. Another possibility is to sign the standard terms and conditions of the

supplier and rely on a judge subsequently finding that some of the terms

were unreasonable under UCTA77, but this seems a little more haphazard

to say the least.

Given that this situation is likely to continue for some time at least, it is

important to consider those factors which are of the essence in determining

a successful contract for both parties because it is generally in both parties

interests for a contract to be successfully concluded.

Relevant factors from the point of view of a potential buyer are these:-

a) A delivered piece of software is overwhelmingly likely to contain

defects.

b) Some of these defects may prove impossible to fix.

c) Unless the software is COTS software, the software is very likely to

be delivered late.

d) If the software is COTS software, its function may not be described

well enough for the purchaser to decide if it satisfies the function

required of it.

e) The retailer of a piece of COTS software is very unlikely to

understand its function in any depth.

f) The software may only run on a very limited set of target computers

and moving it to other different types of computer may be impossible.

g) If the software is in any sense bespoke, it is very unlikely that the

software will do precisely what the user required when delivered.

LL.M. thesis, Les Hatton, 1999 Page 141

h) It may take some considerable process of interaction between the

supplier of bespoke software and the user to converge the desired

and actual behaviour to a satisfactory extent.

i) It is quite possible that some of the user’s desired functionality will

never be successfully incorporated.

Against the backdrop of this impressive list of negatives must be

balanced the fact that software generally performs some functions very

satisfactorily and the prospective user must take this into consideration

given that each of the above list diminishes the value of the software to the

user in some way36. The prospective supplier is simply trying to make a

profitable business out of selling licences for the supply of either its own or

somebody else’s software, (perhaps together with hardware), and its

maintenance. When a contract fails, the basic remedy is rescission, (‘a

giving and a taking back on both sides’), which is to return the parties to the

position they would have been in if the contract had never been formed. It

is clearly in the interests of both parties to a contract that the contract be

completed successfully, (otherwise they would not have been signatories in

the first place), and certain issues must be addressed to maximise the

probability of successful conclusion, over and above those normally arising

in contract.

Contractual clauses for the customer’s benefit

 Basic process issues

Broadly speaking, the customer would like to be satisfied that the supplier

had certain minimum process standards for the production of software and

that as a consequence, there is an acceptably low risk that the supplier will

fail to supply something satisfactory. In general, a good starting point would

36 In my experience, user’s very often suffer from inflated ideas as to what software is actually capable of. In
the past, when demonstrating a particular piece of software satisfied the user’s requirements closely, on
occasions a user has replied, “Very good, but does it do this ...”. Frequently, this can be so remotely related
to what the software is actually supposed to do that I have been lost for words. The situation is not
dissimilar to the seller of a refridgerator being asked if it can also function as a knitting machine, and if not,
why not.

LL.M. thesis, Les Hatton, 1999 Page 142

be a guarantee that a company operated at level 2 or above of the

Carnegie-Mellon model as delineated in Table 5 above. If a company was

deficient in any of these areas, it is likely that the customer would undertake

an unacceptable risk. In general, most companies are not ratified to this

level so the following clauses would help to reduce the risk.

• The supplier undertakes to keep the entire development including

design documentation, project planning information and all source

code under an acceptable Change and Configuration Control system

from the beginning of the project. This system must be capable of re-

creating a software build at any point in time and must be open to

external inspection.

• The supplier undertakes to maintain a formal project plan for the

development including at least the ability to produce PERT and

GANT charts. The project plan shall contain agreed milestones no

further apart than 12 weeks and individual tasks will be limited to a

maximum of no more than 5 days duration if possible and should

never exceed 10 days for any reason. The project plan will be

tracked and updated on a weekly basis and the records will be open

to external inspection. In particular, the difference between the

planned date of the next milestone and the actual date must be

plotted and supplied to the customer on a weekly basis, (see also

Figure 1.14 in Chapter 1).

• The project must be designed in such a way as to provide

incremental delivery of intermediate versions of the contracted

product at regular periods. The contract must provide for fallback

procedures to handle delays or significant departures from the

expected functionality. Each time a project milestone is missed,

negotiations must be entered either to drop functionality or allow

delays, with appropriate financial balancing. Avoiding these simply

puts off the inevitable.

LL.M. thesis, Les Hatton, 1999 Page 143

• The supplier undertakes to maintain a defect tracking database

which lists at least where a defect is found, the nature of the defect, at

what stage of the life-cycle it is found, how it was resolved, and how

serious it was. Every defect must be entered in the database before

and after milestone deliveries. This must be open to external

inspection.

• The supplier undertakes to use code inspections and to keep records

of such inspection detailing the lines per hour and the number of

defects found by the inspector. The records should be open to

external inspection. Inspection rates must not exceed 120 lines per

hour.

• The supplier undertakes to ensure that every executable statement is

either executed by at least one test or an explanation provided why

the statement was not executed, (for example if the statement

represents a hopefully unreachable state such as a failure of internal

correctness, (known as an assertion failure)). In other words, 100%

of all effective statements will be executed by at least one test before

delivery. The records should be open to external inspection.

• The supplier undertakes to correct defects in a reasonable time in

return for a maintenance fee. The contract should provide for patch

releases if a defect is particularly serious or regular updates for less

serious defects so as not to overload the supplier too onerously.

(Most products are updated twice a year).

• The supplier must set up an escrow agreement and demonstrate

annually that the system can be built from the source code kept in

escrow, (see the earlier section on escrow agreements and their

difficulties).

• If there is any intention to future-proof a development to give it a long-

lifetime, the supplier should be urged to undertake to demonstrate

LL.M. thesis, Les Hatton, 1999 Page 144

that the software runs on more than one different platform without

essential change. This makes sense because history teaches again

and again that software generally has a much longer life-span than

hardware and the customer will wish to take advantage of regular

changes in hardware technology without changing the software. As

a classic example, a modern 400 MHz. Pentium II PC costing around

£1200 at the time of writing will comfortably out-perform a vintage

1989 Cray X-MP single processor super-computer costing around £3

million - a mere 9 years and a factor of 3000 in price-performance !

Against this backdrop, software systems very often have lifetimes of

20-30 years trapped on the same ancient hardware as witnessed by

the Year 2000 fiasco discussed earlier.

• Of course, Year 2000 compliance must be guaranteed.

• Whatever clauses for liquidated damages (i.e. penalty clauses) can

be introduced.

• The customer should make sure that they own the rights to any

delivered hardware or software. Though this might sound a trivial

point, supplier’s contracts frequently contain clauses such that title to

these reverts to the supplier in any dispute. Furthermore, it is

generally true for software that copyright subsists in the author unless

otherwise agreed, (a point discussed in detail in Saphena

Computing v. Allied Collection Agencies (1985).)

From the customer’s point of view, if a supplier is unwilling to agree

to any of these, it is probably best not to enter into any contract with them. A

high-quality supplier would use these techniques anyway. Of course the

customer must also realise that the piece of mind bought by the above

requirements only comes at a price. Reducing risk costs money. Doing

business on price alone is manifestly stupid when the costs of failure are so

high, and yet Western I.T. managers seem incapable of conducting

themselves any other way and simply do not understand risk or its

LL.M. thesis, Les Hatton, 1999 Page 145

management. Of course, if no supplier is prepared to enter into a contract

on these terms, it almost certainly means that the project is infeasible

anyway. There is a natural and frequently misguided imperative to

computerise, [14].

Contractual clauses for the supplier’s benefit

The essence of a contract for the supplier’s benefit is to get paid and avoid

liability for everything possible. This ideal (and entirely unreasonable)

position of course will only be achieved with the most naive of customers,

although there are regrettably significant numbers of these as documented

by [14]. Legal precedent so far dictates that reliance on exclusion clauses is

a high-risk venture and a supplier should be much more cogniscent of the

possibility of their failure. As a result, suppliers should seek to limit their

liability to reasonable amounts given that a court will take such factors as

relative bargaining power and the possibility of insurance cover into

account. The following clauses might appear.

• A key factor to protect against is the influence of changes in customer

requirements. A supplier should attempt to secure a contractual

position covering each change to requirements instigated by a

customer recognising not only that each one costs money but that

late changes can and frequently do prejudice the success of the

project as a whole, (this effect is strongly visible in the Saphena

ruling described in detail in Chapter 3).

• The supplier should seek to enter a preliminary contract for the

capture of requirements allowing for any necessary prototyping to

evolve those requirements into a design before any contract for the

work itself arises. There should be no requirement to continue if the

preliminary contract proves that a project is high-risk.

• The supplier should seek to limit liability to a reasonable amount.

The lessons of St. Alban’s v. ICL as discussed in Chapter 3 and also

in Salvage Association v. Cap Financial Services Ltd. (1993) should

LL.M. thesis, Les Hatton, 1999 Page 146

not be ignored here. A derisory amount will not help and neither will

inconsistency. Any clauses forming part of a Standard Terms and

Conditions will be subjected to a reasonableness test based on

UCTA77. There is regrettably little case law on what is reasonable.

In some cases consequential damages have not been awarded as a

matter of policy, however for a direct quantifiable loss as in St.

Alban’s, there seems no escape.

• It is in the interest of the supplier to get the customer to accept

delivery by instalments. This has a two-fold benefit. First, it follows

successful software engineering principles whereby incrementally

delivered software presents a much lower risk than the so-called

‘big-bang’ approach. Secondly, if software ever does come under

the aegis of SGA79 or SSGA94, delivery by instalments would

otherwise be precluded, (unless otherwise agreed, the buyer is

under no obligation to accept delivery by instalments, s. 31(1),

SGA79).

• The supplier will normally like to hang on to the title to any hardware

and the IPR of any software if possible for ever and if not certainly

until it is paid in full for the contracted work.

Contractual clauses for both parties benefit

To re-iterate, it is strongly in both parties interests to agree on a suitable set

of detailed requirements, a suitable set of acceptance tests to demonstrate

that these requirements have been achieved and also a documented

fallback procedure perhaps in the form of penalties if some requirements

are not met or extra requirements added.

• Both parties must agree to a written set of system specifications

known as the requirements. The requirements must be used to write

LL.M. thesis, Les Hatton, 1999 Page 147

the acceptance tests. The system specifications must be attached to

the document37.

• Both parties must agree to a detailed set of acceptance tests to

ensure that the expected functionality and performance is attained.

These must be attached to the contract. The acceptance tests should

contain unambiguous objectively measurable targets to be agreed

before the contract is signed. Disagreement on what constitutes

acceptance is a common feature in the failure to deliver complex

systems, [14]. The definition of suitable acceptance tests is a

complex area and takes considerable time and they are very likely to

be tested in practice.

• Both parties must agree to a suitable fallback procedure if the

acceptance tests are not met. This must be attached to the contract.

Given that a substantial percentage of projects overrun in cost, such

procedures will usually involve the delivery of only part of the system.

There is therefore a strong incentive to design a system so that it can

be incrementally delivered38. However, the comments made in

Chapter 2 suggest that if software is considered as goods, there is an

inconsistency that would have to be resolved as the buyer is under

no obligation to accept only part of the goods under s. 30(1) of

SGA79.

The dangers of not producing suitable fallback procedures are well-

illustrated by the words of Mr. Recorder Havery QC in Saphena

Computing Ltd. v. Allied Collection Agencies Ltd.:-

“I do not regard this document, setting out terms which were

designed to settle the dispute between the parties, as being of the

37 See for example, Saphena Computing Ltd. v. Allied Collection Agencies Ltd. where the court ruled that
they were not. This had a significant bearing on the case as was discussed in Chapter 3.
38 This means that the system functionality is delivered piece by piece in a gradual controlled way. This is
possible in most designs. If the supplier cannot offer this, it is probably symptomatic of an ill-considered
and inflexible design.

LL.M. thesis, Les Hatton, 1999 Page 148

slightest assistance in determining the questions I have to decide i n

this case, including the reliability of the witnesses.”

• If the acceptance tests are passed, the customer will pay promptly

and in full.

The copyright nature of software

This is an excessively complex area as can be divined by reading the

comprehensive review by Millard in [28]. The relevant statutory legislation

is the Copyright, Designs and Patent Act of 1988, (CDP88). Section 1 of

this Act states inter alia:-

(1) Copyright is a property right which subsists in accordance with this

Part in the following descriptions of work:-

(a) Original literary, dramatic, musical or artistic works

(b) Sound recordings, films, broadcasts, or cable programmes,

and

(c) the typographical arrangement of published editions

(2) In this Part, ‘copyright work’ means a work of any of these

descriptions in which copyright subsists.

Software is included through section 3(1) of this Act under the

auspices of a literary work, (a ‘literary work; is defined to include ‘a

computer program’). The situation has already become very confused by

virtue of the fact that some software systems such as those associated with

multi-media are by definition ‘multi-copyright’, in that copyright subsists in

different ways in different parts of the system which for a multi-media

program would typically contain film clips, pictures, sound recordings and

so on as well as the program code. It might also contain databases which

themselves are covered under the guise of a ‘table or compilation’.

There are significant differences in the treatment of each of these

categories. For example, unauthorised adaptation of a program code

constitutes infringement whereas there would be no copyright restriction on

LL.M. thesis, Les Hatton, 1999 Page 149

the adaptation of the various artistic works provided it did not amount to

copying or some other restricted act. To fling a final spanner in the works,

the reader need only consider the above variations in the light of the section

on digital convergence above. Supposing someone wished to (unlawfully)

adapt a program which will be called for the sake of argument Program

version 1. The nature of the adaptation could be determined and this

Program called version 2 say. Consider now the situation depicted in

Figure 4.4

Program
version 1

Picture
version 1

Program
version 2

Picture
version 2

Lawful
adaptation

UNlawful
adaptation

Figure 4.4 This diagram illustrates potential inconsistencies in the treatment of software in
CDP88.

If the points made in the section on digital convergence are used, the

program is simply a picture. If this is edited (lawfully) as a picture into an

adapted picture which happens to have a compatible digital representation

with Program version 2, then a computer program has apparently been

adapted lawfully. If this action was carried out in the source code text of the

original Program version 1, this would be unlawful adaptation. This could

equally well have been treated as a piece of music. There is some weighty

support for this point of view as evidenced by the words of Mr. Recorder

Havery QC in Saphena Computing v. Allied Collection Agencies (1988),

“Copies of object codes produced by Mr. Hughes by way of

improvement to the software are infringing copies in so far only as

they have been produced by use, i.e. copying or adaptation, of the

source programs.”

LL.M. thesis, Les Hatton, 1999 Page 150

The clear implication of these words is that modification of the object

code without modifying the source code is not an infringing act. This is

clearly a difficult semantic area and simply emphasises the need for the

legal system to understand the true implications of digital convergence.

Making escrow agreements work

In essence, an escrow agreement involves the licensor placing the source

code of an application with a reliable third party (an escrow agent) with no

vested interest in the intellectual property content of the source code. The

third party is required under a tripartite agreement between licensor,

licensee and escrow agent, to divulge the source code to the licensee only

in a certain restricted set of circumstances, such as the liquidation of the

licensor. The intention is to protect the licensee from catastrophic loss of

benefit of the software by providing them with ability to maintain the

software, although the scale of what is considered reasonable maintenance

was considered for example in Saphena Computing v. Allied Collection

Agencies Ltd. (1985). The court’s clear verdict here was that such

maintenance should be restricted to corrective maintenance only39.

There are a number of potential problems with escrow.

Legal problems with escrow agreements

In the case of liquidation or receivership, the official agent may have

considerable problems with an escrow agreement as noted in Chapter 2 of

[28], and could conceivably attack it in the following ways:-

• an escrow represented a preference under s. 239 of the Insolvency

Act (1986), (s. 340 for personal bankruptcy). This section would only

apply where the escrow was set up within 6 months of the insolvency

AND where the licensee was creditor of the licensor, which may very

well be the case for software,

39 Recall from Chapter 1 that there are three forms of maintenance, Corrective, Adaptive and Perfective. The
court ruled in the case of Saphena that only corrective maintenance was a permissible activity and any other
act effectively breached copyright. The distinction between corrective and adaptive maintenance was
pointed out by the plaintiff’s expert witness although not in these words.

LL.M. thesis, Les Hatton, 1999 Page 151

• that the arrangement breached the pari passu rule embodied in s.

107,

• that the arrangement was an unprofitable contract under s. 178,

• that the arrangement could be repudiated as a matter of general law

by the official agent.

A further legal difficulty is that the release of the escrow would

require a court order under s. 127, which would only be granted if the court

was satisfied with the legality of the escrow arrangement.

Technical problems with escrow agreements

In spite of the above potential legal problems, escrow arrangements appear

to have been set up quite satisfactorily in the past. Regrettably, the

technical problems can even surmount the legal problems and undermine

the most legally satisfactory of escrow arrangements.

The problem is a simple but profound and ubiquitous one. Recall

that an escrow arrangement exists to allow the licensee to reconstruct

(perhaps on a more up to date computer) or modify (for the purposes of

corrective maintenance) an executable form of the licensed software. In

order to do this, all the necessary software components must be present in

source form along with the precise recipe for building the required

executable from these components and herein lies the problem. The area

of computer science which covers this activity is known as change,

configuration and build control. According to studies carried out by the

Software Engineering Institute at Carnegie-Mellon University, [24], a

significant percentage of companies, (certainly over 50%) had no

satisfactory means of rebuilding executables themselves. The acid test is

whether the software package can be built correctly on a ‘clean machine’,

i.e. one which is physically disconnected from any of the other machines on

a licensor’s network and on which only the basic system software is

installed.

LL.M. thesis, Les Hatton, 1999 Page 152

To carry out this test, the licensor must produce on some standard

medium, (floppy disc, cartridge tape or some similar form), a complete

distribution of all the components of a particular application in source code

form. The clean machine must contain the appropriate system software

components such as a compiler to build the executable. This is precisely

the circumstances in which a source code audit is carried out, [23]. The

author’s experience is that most companies are unable to supply a

complete distribution when asked the first time and a significant dialogue

then follows whilst the remaining pieces are supplied bit by bit. The

process often takes two or three iterations and in some cases, fails

completely so that the source code audit has to take place on one of the

licensor’s networked machines where all of the code can be found

‘somewhere’. It really is that bad40. As a result, it is the author’s view that

although an escrow arrangement may be legally satisfactory, it is very

unlikely to be able to produce the end product of a satisfactory working

executable which is of course the whole point of the exercise. The following

piece of advice is therefore offered to the would-be user of an escrow

arrangement.

It is highly recommended that an escrow arrangement should include a

clause which requires the licensor to demonstrate annually that the source

code in escrow along with build recipes can indeed on their own be used to

produce the desired executable by any reasonably qualified person

following the escrowed instructions, and that acceptance tests sufficient to

demonstrate that the executable has the desired behaviour be run.

This simple expedient should remove any technical difficulties. The

licensor should not feel put out by this. First of all, it is a useful test of their

own change, configuration and build control, and second, they should not

be expected to do it for nothing. The licensee also benefits in the

40 I am not exaggerating here. This actually happened to me when auditing the source code for a safety-
related software system under development for a water company.

LL.M. thesis, Les Hatton, 1999 Page 153

knowledge that the escrow arrangement will function as desired in the

unpleasant but hopefully unlikely eventuality of it being necessary.

The Year 2000 problem

A huge amount of legal opinion has already been written on this subject but

of course there is as yet a paucity of case law. It will not be long in coming.

Here only the nub of the issue will be addressed from the point of view of a

computer scientist. In essence, the central points are these:-

(a) Were the software engineers who were responsible for systems

which are not capable of handling the millennium change negligent

? A related question is what cut-off date should be used to judge this

or is it one of simple intent. In other words, can we say that before

1995 say, engineers had compelling reasons for not allowing for the

millennium change.

(b) What is the position of engineers now working on fixing this problem

and who fail ?

For the reader’s information, the Year 2000 problem, also known as

the Millennium problem or bomb, Y2K and other contractions, comes about

because programmers historically have not kept century information with

their dates. So the year 1985 is internally stored as 85 and so on. Of

course as soon as 2000 comes, this form of year counting resets itself to 00.

Why was the century information discarded ? The normal reason given is

that the limited storage of computers in the 1960s and 1970s meant that

storage was at a premium and many programmers believed that their

software would be replaced long before 2000 arrived. There is a long

history throughout the 1960s and 1970s of large software systems lasting

20 years or more. This is the rule rather than the exception. In other words,

from 1980 onwards, it is increasingly more likely that software would still be

in operation in 2000. In parallel, the explosive improvement in computer

resources such as volatile memory (i.e. RAM), non-volatile memory such as

discs meant that the extra space problem rapidly became insignificant.

LL.M. thesis, Les Hatton, 1999 Page 154

Furthermore from the mid 80s onwards, the problem began to arise as

applications such as annuities and investment and retirement plans began

to creep into the next century.

We can summarise that from several points of view, it is very difficult

to argue in favour of discarding the century part of a date from around 1985

onwards. However, as recently as early 1997 according to various surveys

done in England and indeed in other parts of the world, some 80% of all

companies had done precisely nothing for the simple reason that the

conversion costs a lot of money. Some so-called industry pundits were

even claiming that it was a huge confidence trick brought about by software

consultants to drum up business. It is certainly the author’s opinion that

companies have been extremely lethargic in doing anything, however, it

seems fairly clear that unless a system was actually designed since about

1985 with this problem that the bulk of the blame lies on the senior

management of companies for continuing to do nothing. The bottom line of

all this taking into account the status of those who started on the problem

earlier than others is that if a company with any reasonable amount of

software started on this problem later than about 1995, they are unlikely to

finish in time. For some, 2000 will come even quicker than others because

the code ‘99’ is often used as an end of record marker in COBOL, (a

language very commonly used for business systems). They will have to

finish by the end of 1998.

Perhaps one last point will underline the hapless state with which we

have prepared ourselves. Those very few conversions which have already

been done successfully, ([15]), suggest that somewhere between 50 and

60% of the entire exercise is in testing, an area of computer science which

has been massively neglected over the years. Test expertise is very hard to

find. On top of this, the results of a famous study done at IBM in the 1980s

were mentioned in Chapter 1 which indicated that every corrective change

to a piece of software had about a 15% chance of introducing a defect at

least as bad - ‘fix 7 introduce 1’. It is widely believed that Year 2000 work is

LL.M. thesis, Les Hatton, 1999 Page 155

so boring, (the author can personally vouch for this), that the spoilage ratio

is twice as bad as this. Needless to say, this factor has been left out of all

the calculations. If this weren’t enough, of the three standard ways of

correcting this problem, (they are known as windowing, compression and

expansion), most companies are choosing windowing which simply puts

the problem off a little while and worse, is the most likely of the three

techniques to introduce new defects through the mechanism of unexpected

side-effect, a common problem faced when modifying a system whose

behaviour is not well-understood.

Perhaps as a computer scientist, the author should defend his own

industry but it is difficult to defend the woefully ignorant and sluggish

approach to this problem exhibited particularly by I.T. management and

they richly deserve what they are about to get. Unfortunately, a lot of

innocent users will suffer too. Let the litigation roll ...

Scene: It is the Year 2000. Yet another case has appeared before the courts concerning the

complete and traumatic failure of a financial system.

Prosecutor (P): “When were you first aware of the need to handle the end of the century

correctly in your computer programs ?”

Defendant (D): “Er, 1998”

P: “Isn’t that a little late don’t you think ?”

D: “Oh no, we felt that 2 years was plenty of time - at least that was what all the magazines said

- ‘act now before its too late’”.

P: “But it already was too late wasn’t it ?”

D: “Er, yes, we under-estimated how long it would take to test the new systems”.

P: “By how much ?”

D: “We don’t actually know yet”.

P: “What approach did you take to handling the Y2000 problem ?”

LL.M. thesis, Les Hatton, 1999 Page 156

D: “We decided to re-write the entire system using a Client/Server Object-Oriented

architecture using C++ to promote maintainability, portability, reliability and easily handle the

coming problems.”

P (who has heard this sort of thing before): “On what grounds ?”

D: “We read about it on an advertising board in Waterloo station and it was confirmed at a

major computing exhibition in a talk entitled “Re-write your system using C/S O-O

architectures using C++ to promote etc. etc.” Also a friend in the Gromet and Flywheel, my

local pub, told me it would be perfect.“

P: “In other words, you embarked on this without any evidence that it would help ?”

D: “Er, I suppose so.”

P: “Did you tell your investors of your intentions ?”

D: “No, because as system administrators we knew what was best for our investors.”

P: “I take it these are the very same investors who can no longer find out what has happened

to their investments which seemed to have disappeared in the post 2000 black hole ?”

D: “Er, yes”.

P: “Before you started writing did you actually track defects and defect costs so that you

would know if your proposed new system would be better or worse ?”

D: “Er, no”

P: “Did you design regression testing suites so that you could incrementally test the new

system’s behaviour against that of the old ?”

D: “Er, no, not exactly, as we knew we would get it right and we didn’t really have time”.

P: “Did you have prior experience of Client-Server Object-Oriented Systems before you

embarked on this rather ambitious scheme ?”

D: “Er, no, but we decided to use the best sub-contractors”

P: “Did you employ these by means of competitive tender ?”

D: “Yes”

P: “So you mean the cheapest ?”

D: “Yes, I suppose so”.

LL.M. thesis, Les Hatton, 1999 Page 157

P: “Did they have any such experience ?”

D: “Er, no, but they insisted on doing it this way.”

P: “Why did they insist on doing it this way ?”

D: “Er, because they wanted it to put it on their CVs.”

P: “So, you were prepared to invest a significant amount of your investors money and risk the

rest to develop a system about which you understood nothing using sub-contractors who

did not understand anything either so that they could put their experience on their CVs ?”

D: “I suppose so.”

P: “And how did you control these sub-contractors ?”

D: “Well they were all rocket scientists”

P: “I beg your pardon !”

D: “They had Ph.Ds in mathematics and physics and things like that.”

P: “Did they have any qualifications in software engineering and software reliability ?”

D: “No, I don’t think so.”

P: “How did you control basic issues such as change and revision, project planning,

estimation, management and risk, and the ultimate quality of the software”

D: “We left it up to the sub-contractors.”

P: “Did you pay them to do this as part of the project ?”

D: “Er, no, it would have added too much to the expense and we have a duty to look after our

investor’s money.”

P: “These are the same investors who have now lost everything I take it ?”

D: “Er, yes”

P: “Did you in fact have any change, revision, planning, test and quality records for the

delivered software ?”

D: “Er, I don’t think so”.

P: “Would you say that this was something to do with the fact that the delivered source code

does not compile properly, does not correspond to the delivered object code or system

documentation and that the sub-contractor has now gone on to his next job.”

LL.M. thesis, Les Hatton, 1999 Page 158

D: “Yes, I suppose so.”

P: “I rest my case.”

The People: “Guilty, guilty, guilty !”

Perhaps the reader might find this a little alarmist, but it seems in

many ways inevitable after the practices the author has witnessed in the

good name of software engineering in the last few years and reflects the

almost unbelievable nonchalance with which the software industry in

general and the financial sector in particular views both software reliability

and the end of the century. As a matter of interest, although the whole of the

above confrontation is a collage, each of the responses by the “Defendant”

has been taken from a real-life response by one of a large number of

companies the author has talked to in the last few years. None of it was

made up, so if the “Defendant” is taken as the software engineering industry

as practised in general, the dialogue is real, (and so should be the verdict).

This section will end with a brief list of application areas which could

be affected by Year 2000 problems:-

• Fire and burglar alarms

• Bar-coders

• Embedded control systems in manufacturing

• Air-traffic control systems (possibly very badly)

• Global navigation systems

• Anything with expiry dates - canning factories and so on

• Time and date logs in FAX machines and similar

• Employment clock-in systems

LL.M. thesis, Les Hatton, 1999 Page 159

• ATM machines and indeed any card-access systems which expire

the cards

• lifts

• Central heating, air conditioning, light and heating systems

• Building management systems

• Medical system

• Safes and time locks

• Security and access control systems

• Telecommunication systems

• Utilities such as water, gas and electricity distribution

• Banking systems generally as they have some of the most complex,

out of date and poorly designed software the author has yet seen.

This list is by no means complete. The author did a project on this

topic in 1997. At the project start, he felt that the whole area was somewhat

hyped up. After finishing the project, he found that if anything, it may have

been understated. There are clearly problems ahead and litigation may be

the least of our worries.

Benefit versus inconvenience

In the author’s view, any discussion of liability for defects in software should

be mitigated with the benefits which accrue for the price paid. The unique

property that software can be copied limitlessly and precisely at very low

cost means that purchasers of COTS software generally get a very good

deal indeed. Chapter 1 has highlighted the difficulties faced by computer

scientists as they attempt to produce reliable software, COTS, bespoke or

hybrid. Yes it is certainly true that we have so far failed to achieve

standards even approaching the rest of engineering, but software

LL.M. thesis, Les Hatton, 1999 Page 160

engineering is relatively immature as yet. Any legal witch-hunt against

software suppliers such as might arise in the wake of the Year 2000

problem is in grave danger of throwing the baby out with the bath-water and

it must be recalled, society now depends completely on software and has

for some years now. There is a certainly a lot of substandard practice but

given that even the most qualified of computer scientists is quite likely to be

unable to deliver a complex system in any but a general way resembling

what its end-user expected, any liability must be traded off against the

benefits and the cost of such benefits.

For example, most of the author’s PC software is substandard in

terms of general reliability. Such well-known products as Windows in its

various forms collapse at very regular intervals including at the official

opening of Windows ‘98 by none other than the CEO of Microsoft, Bill

Gates41. However, it is also very inexpensive on a single user basis costing

a few 10s of pounds. The author’s own annoyance with these products

stems from the fact that they could be considerably better for a similar price,

a personal view based on his experience as a computer scientist. Where

there seems real potential for action is when a supplier builds a generally

high-integrity system such as a medical imaging system around a COTS

product of known relative unreliability such as Windows simply because it is

widely available and therefore ‘acceptable’ in some sense42. This is not

dissimilar to building a bridge from cardboard because there was a good

supply at the local supermarket. Ready availability at a good price does not

imbue a product with reliability. This is already happening on a large scale

and is particularly worrying. Draft international standards such as IEC

61508 encourage end-users to verify that a product will achieve an

acceptable level of reliability to a level commensurate with the risks

associated with the system.

41 An event greeted by undisguised relish by myself and about 300 million other computer users.
42 This is the trend in modern medical imaging systems to reduce costs.

LL.M. thesis, Les Hatton, 1999 Page 161

In general, however, most software tends to behave reasonably most

of the time and users would prefer to have it than not. This is arguably due

to the Darwinian effects exemplified in Figure 1.8, in that most of the really

bad stuff never sees the light of day. Certainly modern telecommunications

and the World Wide Web would cease to be if software were to be removed

as would a number of other fundamental areas, which society as a whole in

the information age would not be prepared to forgo. Any approach to

liability for failure must then reflect this benefit and this therefore places

particular emphasis on the need for industry-acceptable levels of

competence to be used as a basis for a best practice.

Of course, trade-offs between benefit and risk have been around in

engineering for many years. This is true even for critical systems. A classic

example of this can be found in the commercial aviation industry where a

treaty known as the Warsaw Convention attempts to limit the liability of a

carrier in the event that passengers lose their lives. The idea is that the

huge benefits of air travel should not be threatened by unlimited liability. In

fact, liability is set at derisory levels with a life being worth around $75,000

dollars including legal fees. Some countries such as Japan do not accept

this as exemplified in the Airbus crash at Nagoya a few years ago where

liability was set at $1.8 million per passenger. As another example,

consider the errant ABS system discussed in Chapter 1, Table 2. In general

such systems are manifestly more effective than manual techniques and

although they existed before computerisation, they have become far more

affordable and therefore available with the advent of computerisation.

Clearly, if someone is physically injured as a result of the failure of such a

system, liability is strict, however, no court could afford to ignore the general

effectiveness of such systems. As was pointed out earlier, systems which

fail to provide a benefit at least commensurate with their failings rarely see

the light of day and then not for long.

As another example, airbags are thought to be responsible for

around 90 deaths in the US, usually the elderly or small children. Against

LL.M. thesis, Les Hatton, 1999 Page 162

these tragedies they are also believed to have saved a rather larger

number of lives in the same time interval. Not very long ago, the author

trained a number of the engineers responsible for airbag deployment for a

major car manufacturer. They explained that airbags originally deployed

with an explosive force equivalent to a stick of dynamite43. Advances in

technology both in hardware and software have reduced this to around a

quarter stick of dynamite. This is clearly an example of a beneficial

technology with a risk - the driver and front seat passenger sit facing a

software-controlled motion-induced bomb, but the statistics are weighted in

favour of the beneficial effect. Of course such trade-offs are not unknown for

example as frequently occur in the medical world, but a surgeon does not

warrant to save his patient and the law has considerable experience in

dealing with this.

The only problem we face here in the long run is the author’s belief

that for software-controlled systems, things will get worse again before they

get better owing to the dramatic rise in software content in consumer

devices which will erode at least temporarily the very high levels of

hardware reliability achieved using modern manufacturing methods. This is

evidenced by the answering machine example also referred to in Chapter

1, Table 2, which is considerably more unreliable than the technology it

replaced and manifestly unpopular in the author’s family.

43 The detonation chemical used requires an explosives licence for transport.

LL.M. thesis, Les Hatton, 1999 Page 163

Chapter 5: Summary and suggestions for further work

This thesis has attempted to build bridges between the legal perspective

and the perspective of a pragmatic software engineer. To some extent it

has succeeded and in other ways it has fallen short of the author’s

expectations.

For example, when the author started he believed that he could

resolve the ‘goods v. services’ issue rather more satisfactorily. The more he

studied it however, the more he believed that the issue is essentially

unresolvable as a series of legal formulae appropriate to statutory

legislation. This is because of the continuous nature of the spectrum

between COTS and fully bespoke software which as demonstrated in

Chapter 3, can be related to an equivalent continuous spectrum of duty of

care, a delictual issue and concurrently to a continuous spectrum between

the treatment of goods on the one hand and services on the other. Rather,

the author now believes that software would be much better treated sui

generis and requires statutory guidance, probably under an extension to

the Sale of Goods Act, to avoid inconsistent interpretation even though case

law so far has led to eminently reasonable conclusions, albeit essentially

derived either explicitly or implicitly from contractual issues rather than any

form of delictual or product liability. There is some general argument in

favour of a sui generis approach as evidenced by the Beta Computers

(Europe) Ltd. v. Adobe Systems (Europe) Ltd. (1995) although this case

revolved around an interpretation based on an element of Scottish law with

no equivalent in English law.

One aspect becomes very clear in all of this. The greatest burden for

any other than pure COTS software appears to fall on contract until statutory

issues become clearer. There is therefore an urgent need to draft software

contracts covering issues as detailed in Chapter 4. This may require a

fundamental change of emphasis on behalf of lawyers. In general,

contracts are written not to be used, in full expectation that the end-product

LL.M. thesis, Les Hatton, 1999 Page 164

will be achieved without too many problems. Of course, contracts still fail

and lawyers are kept busy as a result. Software development projects are

manifestly different however. They usually fail, so contracts will need to be

much more aimed at recovery based on partnership between those privy to

the contract. Conventional remedies are not very useful to either party in

the wake of a software project failure.

In terms of further work, there is clearly going to be a flurry of litigation

in the wake of the Year 2000 problem with much more public attention

focussed on software failure. It is hard to predict how this will turn out,

although it is hoped that things will improve as a result rather as the disaster

of the Tay Bridge collapse in 1879 led to a little later to the extraordinarily

over-engineered Forth Bridge which could probably survive a direct impact

from a comet. The first cases against COTS software will help to clarify

opinion, but the recommendation of this thesis is that for consistency, (for

example to parallel the courts’ willingness to imply reasonably fitness for

purpose in contracts), they be firmly treated as goods under SGA79 taking

account of those problem areas mentioned in the body of the thesis.

In software engineering just as in other areas of human endeavour,

disaster is regrettably the mother of innovation in engineering and litigation

is an important control in prescribing what is a reasonable trade-off

between benefit and risk for the end-user. As in all engineering, the

balance between benefit and risk changes quickly as the discipline

improves.

LL.M. thesis, Les Hatton, 1999 Page 165

Appendix A: Proposed changes to the US UCC,
(Universal Commercial Code), and implied terms in UK
law.

The central reason for including a discussion of this US statute is quite

simply that most software in use in the world originates there. It is therefore

of great interest to international users of US software as to how US law

compares with for example UK or European law, given that US software

contracts usually specifically state that the contract falls under the

jurisdiction of US courts.

The UCC is the fundamental underlying source of American commercial

law and a new law, Article 2B is currently being drafted to help address

disputes arising over software, [35]. The UCC plays a similar role in many

ways to both the Sale of Goods Act (1979) and the Goods and Services Act

(1982). Although only in draft form, and already very complex at 216 pages

at the time of writing, it is already exerting great influence on the US legal

system. Its contents are of great concern and clash in some cases rather

violently with equivalent UK and European laws. This appendix will discuss

these concerns briefly.

In essence, according to [35], inter alia, the new law will:-

a) Legalise Draconian restrictions on use, reverse engineering and

improvement of interoperability of software products

b) Organise the law around a packaged (i.e. COTS) software model, an

area which casts little light on bespoke or consultatively supplied

software, which will nevertheless have to conform.

c) Make it easier for the supplier to reduce their responsibilities to the

purchaser.

LL.M. thesis, Les Hatton, 1999 Page 166

These are clearly in considerable antipathy with significant aspects

of UK and European law and each section will now be discussed with

reference to relevant UK and European law.

Restrictions on use.

Article 2B’s sections 2B-312 and 313 allow the software supplier (licensor)

to say where the program can be used, what machines it can run on, who

can use it and what purposes the customer can use the program for. In

effect, these sections would allow a supplier to deny the purchaser any

rights to third-party maintenance, as has already been upheld in [36].

In the UK, section 7 (4) (a) of the UCTA, 1977 states

“liability in respect of the right to transfer ownership of the goods,

or give possession, cannot be excluded or restricted by reference to

any such term except in so far as the term satisfies the requirement

of reasonableness”.

It is highly debatable whether the courts in the UK would consider

such restrictions reasonable.

The packaged software model

Article 2B attempts to describe all legal relationships concerning software in

terms of a software publisher and an end user. We have already seen in

earlier discussions, that this COTS model is fundamentally different than

other types of software and no legal precedent yet exists. On the other

hand, there is strong legal precedent in the form of the Saphena and St.

Alban’s rulings discussed in Chapter 3 for the delivery of software in which

there is a degree of consultancy. It can be expected that there will be

fundamental differences in litigation arising from Article 2B and what has

already arisen in the UK. Prospective UK purchasers of US software

should take heed.

LL.M. thesis, Les Hatton, 1999 Page 167

Reduced responsibility to customers

Existing US law in the shape of Article 2 of the UCC takes a similar view of

the so-called “AS IS” clause, in which the purchaser assumes all of the

responsibility, to that in the UK, in the sense that it allows for disclaimers but

against a background judgement that they are a disreputable practice.

Although in the UK, they are subject to the test of reasonableness as

described by the UCTA 1977. An unreasonable clause will be deleted by

the courts.

The proposed replacement clause 2B specifically allows for the

model whereby the customer does not see most contract terms until after

the product is purchased, for example, by being forced to click on an “I

agree” button during installation. Of course the purchaser can decline and

take the product back to the supplier, but if he or she clicks on the “I agree”

button44, then the terms become part of the licence however harsh.

Again, it is difficult to foresee how this would be treated in the UK. It

may well be necessary for statutory provision to be made for some

equivalent to the breathing period allowed in financial contracts in the

Financial Services Act (1985). It is certainly true from an engineering point

of view that it makes it easier for a software company to sell low-quality

products without legal recourse.

44 This can actually happen inadvertently as modern graphical user interfaces store an arbitrary and
sometimes load-varying number of clicks and supply them to the serviced application in some time-
dependent manner. It is all too easy to click once too often and have this stored and applied later to
something which the user did not intend.

LL.M. thesis, Les Hatton, 1999 Page 168

References

1. Hatton, L., M.H. Worthington, and J. Makin, Seismic Data Processing:
Theory and Practice. 1986, Oxford: Blackwell Scientific Publications. 177.

2. Sommerville, I., Software Engineering. Fourth ed. International
Computer Science Series. 1992, Wokingham England: Addison-Wesley.
334.

3. Boehm, B.W., Software Engineering Economics. 1981, Englewood
Cliffs, New Jersey: Prentice Hall.

4. Arnold, R.S., On the Generation and Use of Quantitative Criteria for
Assessing Software Maintenance Quality, . 1983, University of Maryland.

5. Kaletsky, A., Snakeoil, software and Gates, in The Times. 1997:
London.

6. Wayt Gibbs, W., Software's Chronic Crisis, in Scientific American.
1994. p. p. 72-81.

7. Mellor, P., CAD: Computer-Aided Disaster, . 1994, Centre for
Software Reliability, City University, London.

8. Hatton, L., Computer programming languages and safety-related
systems, in Proceedings of 3rd. Safety-Critical Systems Symposium, F.
Redmill and T. Anderson, Editors. 1995, Springer-Verlag.

9. Woodward, M.R., D. Hedley, and M.A. Hennell, Experience with path
analysis and testing of programs. IEEE Transactions, 1980. 6(3): p. 278-
286.

10. O'Donnell, J., GM: Computer glitch may cause brake problems, in
USA Today. 1998: Detroit. p. B1.

11. Leveson, N.G., Safeware: System Safety and Computers. 1995,
Reading, Mass: Addison-Wesley.

12. Neumann, P.G., Computer-Related Risks. 1995, New York: Addison-
Wesley. 367.

13. Hatton, L., Software failures - follies and fallacies. IEE Review, 1997.
43(2): p. p. 49-54.

14. Collins, A. and D. Bicknell, Crash: Learning from the World's Worst
Computer Disasters. 1998, Sydney: Simon & Schuster. p. 428.

LL.M. thesis, Les Hatton, 1999 Page 169

15. Hatton, L. The Year 2000: How much should we worry ? in Eurostar
'97. 1997. Edinburgh.

16. EC-85/374, Directive on Product Liability, . 1985, EC: Brussels.

17. Yourdon, E., Decline and Fall of the American Programmer. 1992,
Englewood Cliffs, N.J.: Prentice-Hall. 352.

18. Adams, N.E., Optimizing preventive service of software products. IBM
Journal Research and Development, 1984. 28(1): p. 2-14.

19. Hatton, L., The T-experiments: errors in scientific software, in Quality
of Numerical Software, Assessment and Enhancement, R.F. Boisvert,
Editor. 1997, Chapman & Hall: London. p. p. 384.

20. Hatton, L., Re-examining the fault density - component size
connection. IEEE Software, 1997. 14(2)(March/April 1997): p. p. 89-97.

21. Hatton, L., The T experiments: errors in scientific software. IEEE
Computational Science & Engineering, 1997. 4(2): p. 27-38.

22. Pfleeger Lawrence, S. and L. Hatton, Investigating the influence of
formal methods. IEEE Computer, Feb. 1997, 1997. 30(2): p. pp 33-43.

23. Hatton, L., Safer C: Developing for High-Integrity and Safety-Critical
Systems. 1995: McGraw-Hill.

24. Humphrey, W.S., Managing the Software Process. 1990: Addison-
Wesley. 494.

25. Genuchten, M.v., Towards a Software Factory, . 1991, Eindhoven.

26. Brooks, F.P., The mythical man-month. 1975: Addison-Wesley.

27. Lloyd, I.J., Information Technology Law. 2nd edition ed. 1997,
London: Butterworths. 508.

28. Reed, C., ed. Computer Law. . 1996, Blackstone Press Ltd.: London.
396.

29. Leder, M. and P. Shears, Consumer Law. M+E Law Handbooks.
1991, London: Longman. 279.

30. Triaille, J.-P., The EEC directive of July 25, 1985 on liability for
defective products and its application to computer programs. The Computer
Law and Security Report, 1993. 9: p. 214-226.

LL.M. thesis, Les Hatton, 1999 Page 170

31. Lloyd, I.J. and M.J. Simpson. Legal aspects of software quality. in
Software Quality Management. 1993. Southampton: Computation
Mechanics Publications, Elsevier.

32. Beizer, B., Software Testing Techniques. Second ed. 1990: Van
Nostrand Reinhold.

33. Hatton, L., Software Failure: avoiding the avoidable and living with
the rest. 1999: Addison-Wesley.

34. Finkelstein, A., A software process immaturity model. ACM Software
Engineering Notes, 1992. 17(4): p. 22-23.

35. Kaner, C. and B. Lawrence, UCC Changes pose problems for
developers. IEEE Software, 1997. (14) 2(march/April): p. p.139-142.

36. Reporter, F., MAI Systems Corp. v Peak Computer Inc., . 1993, US
Court of Appeals for the Ninth Circuit.

