
IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 1

Dependability Improvement Depends on
Dependable Measurement

Les Hatton, Emeritus Professor, Kingston University, London,

Abstract—In this review of dependable computing I will try to embrace not only the tireless efforts of computer scientists everywhere

working to tame this phenomenal technology of Computing, but also the perspective from the much greater number of people who

have to depend on it for their pleasure, their living and in some cases, their lives. If computing is ever to be considered dependable by

all its stake-holders however, we must address the most fundamental aspect of process improvement, that of measurement. As

currently practised, it is wholly and demonstrably inadequate.

Index Terms—Computer Society, IEEE, Dependable Computing, journal, LATEX, paper, template.

✦

1 INTRODUCTION

E Ven a brief review of the Topic of Dependable Comput-
ing covers a vast range of avenues and as such I have

created references to both this paper and a bibliography in
Supplementary Materials. Bibliography references may be
found in Supplementary Materials and are prefixed by SM.

It is clear that researchers have been worrying about
dependability for a long time [SM1], [SM2], [SM3], [SM4],
[SM5], [SM6]. Indeed the need for something as seemingly
mundane as the desk checking of a program appears to have
been recognised by Alan Turing in the late 1940s. Second, as
the years have gone by, more and more aspects of comput-
ing have become embroiled in the notion of dependability as
our computing needs have become more sophisticated and
more ubiquitous. Today, we must embrace at least the no-
tions of economics as unreliability is expensive [1]; of safety
as computers dominate the world of transport amongst
others [2], [3]; of security as computing is by definition not
dependable if its actions are in control of a malignant party
[4]; and indeed of mental health as the frequently poisonous
world of social media is a computational phenomenon.
Finally, we have yet another elephant in the room, that of
AI and the expected tsunami of auto-generated software. It
is therefore not unreasonable for the would be builder of
dependable systems to interpret dependable as protecting
from harm in a broad sense.

The end-user will have an even broader understanding
of dependable, and will have in mind an experience close to
the legal and indeed self-evident concept of quiet ownership.
Of course they don’t want to be harmed but they want
the product they buy and the frequently huge amount of
software embedded in it, to perform largely as advertised
for a suitably long period give or take the occasional reboot.
Anything less than this cannot be considered dependable
from their point of view.

It might seem a little odd to the uninformed reader that
computer scientists even worry about making computing

• Les Hatton was with the Faculty of Science, Kingston University, London,
KT1 2EE, U.K.
E-mail: see http://www.leshatton.org/

Manuscript received XXXXX DD, YYYY; revised XXXXXX DD, YYYY.

dependable. Why on earth would we have computer sys-
tems which were not dependable? After all, we do not
have the same mindset with conventional engineering. It
would be unconscionable to design a bridge which was not
dependable for example, even if we occasionally do. It is
true that there was a time in the distant past when civil
and mechanical engineering were not dependable but by
and large we have learned from our mistakes over the cen-
turies these activities have taken place [SM7], [SM8], [SM9],
although even now as demonstrated by the lamentable
Boeing 737 MAX saga, sometimes those hard-won lessons
and reputations are forgotten when we attempt to transfer
those lessons to IT.

Unfortunately the concept of non-dependable comput-
ing has been thrust upon us by its track record of unreliabil-
ity. Indeed, program crashes, bugs, unexpected behaviour,
slow responses and a rapid overturn of technologies with
strange acronyms which do not seem to improve matters,
have become part of the landscape of dealing with com-
puting. To the end user, they are at least incomprehensible,
inconvenient and often worse especially as modern em-
bedded control systems intrude into every aspect of life.
Having to reboot your washing machine by unplugging
it, giving it a few seconds to recover from the excitement
and plugging it back in again is bad enough, but having
to pay an engineer to discover this merely rubs salt into
the wound. Many devices even have a little reset button,
fairly well hidden as if the manufacturer is reluctant to
include this. To the computer scientist of course this should
be frankly embarrassing given the efforts over the years
at attempting to improve the situation. Coincidentally, the
day before this article was submitted (28-Aug-2023), the
National Air Traffic Control System in the UK collapsed
without adequate backup systems so controllers had to enter
the airline data by hand. the stated reason was that this was
caused by a corrupt flight record1. If true, this is lamentable.
The result was chaos for several days in European air space.

So what is so special about computing that means that

1. https://www.bbc.co.uk/news/uk-66644369, accessed 30-Aug-
2023

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 2

neither computer scientists nor end-users can take its de-
pendability as a given?

1.1 Early reliability

In the early days of computing, even the existence of a
dependable underlying operating system could not be taken
for granted as they usually can today, although there is in-
variably some excitement when an operating system transi-
tions to a new version. They had to be designed and written
from scratch, usually in assembler language, (Unix was the
first operating system written in a higher-level language (C)
in the late 60s and early 70s). Operating systems of course
had to be dependable because they are a sine qua non. If
the OS isn’t dependable, neither is anything else. Amongst
the leaders in developing these were IBM, Sperry, CDC,
DEC and ICL. The IBM experience even spawned one of
the best books ever written on the trials and tribulations of
developing dependable programs, Fred Brooks’ eponymous
”Mythical Man Month”, [SM10]. Glancing through this 48
year old masterclass today, it is reasonable to ask if we have
actually learned anything.

The operating systems of the 60s, 70s and 80s were
dependable in the sense of not failing very often. There
isn’t much available in the way of data (there still isn’t),
but anecdotally and by personal experience, they behaved
and remained in the background which is where an oper-
ating system should be. Then along came the PC. All of
sudden, the operating system was not invisible. Instead we
had the infamous and painfully frequent ”Blue screen of
death”. Older users will remember that it was not at all
uncommon to spend most of the working day watching the
PC reboot, particularly after an ”upgrade”. Dependability
was not at the forefront of those early PC program design-
ers. They were trying to create a new kind of consumer
computing, and they succeeded beyond anybody’s wildest
dreams. Instead of a mean time between failures of weeks,
this had now dropped to hours but the end users put up
with it because they were getting games and new visual
means of interaction which were previously unknown - the
perceived benefits were worth the considerably degraded
dependability.

Today, the operating systems are generally dependable
again in that we do not expect them to fail to behave as
expected even though they occasionally do. What then of
the applications which run on them?

Over the years, at least three distinct threads for attempt-
ing to improve dependability have emerged,

• Software and System Testing
• Software Process and Standards
• The hope for Formalism

They are not independent in practice but have indepen-
dent philosophies.

1.2 Software and System Testing

Wired into software systems development since the early
days, is the notion that testing offers us the possibility not
only of improving a system’s dependability but also of
quantifying it. There are many such texts starting with early
pioneers [SM11], [SM12], [SM13] with recent timely reviews

of current practice [5] but the empirical impact is still not
clear today in spite of Software testing being part of the
Computer Science curriculum for at least 20 years [6].

Software testing is something of a Cinderella occupation
and there is still misunderstanding as to what it entails.
The common viewpoint is that Software Testing is about
proving that a system functions correctly. In practice it is
quite the opposite. The whole point is to prove that the
system does not function correctly. In other words it is a
falsification exercise not a verification exercise. Whichever
we use however does not obscure the fact that testing
software has a major problem. The number of potential
inputs to any significant piece of software is so vast that
only a tiny percentage of possibilities can be considered.
The hope is that these intersect with the way the software
will be used by its intended users but this is a non-trivial
exercise to say the least.

1.3 Software Process and Standards

One of the most significant growth areas of the last few
decades in attempting to promote dependability is in soft-
ware process specification and its standardisation. The belief
is that by codifying ”good” practice and enforcing this
by standardization in some way will promote the produc-
tion of dependable systems. This appears self-evident and
is an essential component of how, for example, modern
bridge building addresses failures and how they should
be avoided. Some 50 years ago following some very high
profile bridge collapses, attention focused on a component
known as a box-section girder. In short, they failed catas-
trophically in some conditions. This occurred sufficiently
often that it led to independent enquiries in Australia 2,
Germany and the UK, where the Merrison committee was
convened3

The details of box-girder bridges are irrelevant here
but we are interested in the response of the engineering
community in mitigating their vulnerabilities. The Merri-
son committee set about understanding how such failures
occurred and how they might be avoided, finishing with
its highly influential final report in June 1973. Such reports
have legal teeth and are influential in affecting a court’s
decision on liability if a comparable failure occurs. However
notional compliance with a report is not of itself enough to
guarantee that the lessons embodied within it have been
followed and it is worth noting the following quotation by
Sir Ian Merrison after this detailed analysis.

”No amount of writing of design codes and writing
of contracts can in the end be guaranteed to prevent the
results of stupidity, carelessness or incompetence. But
one can do a great deal to discourage these vices and
that must be done.”

Our efforts in software engineering have not been so
distinguished in spite of enormous amounts of documenta-
tion defining what ”good” practice was, (e.g. ISO 5055, ISO
12207, ISO 25010, ISO 90003, and many others). In spite of
all of this, some 35 years after the Merrison report appeared,

2. www.parliament.vic.gov.au/papers/govpub/VPARL1971-
72No2.pdf, accessed 19-Aug-2023.

3. https://www.istructe.org/resources/blog/learning-from-history-
box-girder-bridges/, accessed 19-Aug-2023.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 3

the Chinook helicopter crash of 2006 featured all three sins,
stupidity, carelessness and incompetence, as described in an
excoriating report by [SM14].

There is no excuse for the actions of those people and
organisations named in this report and their contributions to
this crash but it rather begs the question, what do we mean
by ”good” practice in a discipline such as software systems
engineering which is almost devoid of measurement based
evidence?

1.4 Safety and the hope for formalism

Given the many potential deficiencies of Software Testing,
the idea of formally proving the behaviour of a computer
program took hold in the last century with many adherents
based on the pioneering work by Dijkstra, Hoare and oth-
ers. However, the attractiveness and apparent self-evident
nature of a methodology does not guarantee quantifiable
benefits and as is usual in computing methodologies, there
have been few published attempts to quantify any depend-
ability benefits empirically. A notable exception was [7] who
studied an air-traffic control system specified in a formal
language Z and implemented in a programming language
C. This revealed some intriguing patterns including the fact
that more errors were found in the Z specification than
were identified in the running code. The target system was
relatively small by modern standards (around 200,000 lines
of code - more of this measure later), so the scalability of the
methods used is unknown.

It is probably reasonable to say that neither Testing
nor Formalism have scaled sufficiently well to keep up
with the inexorable growth of software systems, reported
by [8] as close to 20% per year measured in source code
terms. As well as this growth, software methodologies and
programming languages continue to proliferate complicat-
ing the dependability argument further. It is impossible to
improve a system if it is changing too quickly to apply
measurement-based feedback because the feedback rapidly
becomes irrelevant.

New technologies are often greeted with great enthu-
siasm by their proponents but such enthusiasm is usually
about features and rarely about dependability and in truth
they seem merely different rather than better.

What is missing of course is the most essential element of
engineering improvement - measurement-based feedback,
whereby quantifiable knowledge and understanding of past
failures permits future occurrences of the same or similar
failures to be mitigated or even avoided.

2 THE PIVOTAL ROLE OF MEASUREMENT

It is fair to say that the state of software measurement
has simply not moved on. Decades ago, researchers were
lamenting that computer scientists simply do not experi-
ment enough with [9] making the point that measurement
in computer science was mostly characterised by its ab-
sence in comparison with conventional sciences. It is not
just for want of trying. One of the most cited papers in
computer science [10] describes an experimental measure of
complexity and its apparent relationship to defects. It has
been both lauded and criticized in the intervening years

[11]. Unfortunately, nearly 50 years of experience with it
appear to have revealed no systematic benefits and yet a
web search for ”Cyclomatic Complexity” reveals that it still
features on many programming advice sites on the web, no
doubt because we are little further on in understanding how
software systems fail.

It is always useful to compare the state of measurement
with other sciences as Tichy and co-workers did 25 years
ago loc. cit. Let us consider a relatively recent candidate. 25
years ago we had little or nothing in the way of genetic
measurement data. This position has been completely trans-
formed in the intervening period and most importantly for
this article, the results have been openly distributed throughout
the internet for anyone to access. We have open access to
the nucleotide distributions of sequenced genomes4, the
amino-acid sequences of proteins5, including their post-
translationally modified versions and also defect rates in the
form of SNP (Single Nucleotide Polymorphism) databases6

which describe occurrences of single nucleotide omissions,
additions, transpositions and so on. All a researcher needs
is decent internet access (the protein database alone consists
of some 200 million proteins at the time of writing along
with ancillary biochemical and other meta data) and a bit
of programming experience. The formats are open, human
readable and perl and python packages to read them pro-
liferate. Moreover many of the most common analysis tools
for gene-wrangling are already openly available. The entire
discipline has an open access and collaboration policy.

In the same period, although it is true that software
engineering has found ways to make some source code
available through the transformational process of open
source, (for example github), the situation with regard to de-
fect measurement is by comparison, abysmal. Commercial
defect histories are noteworthy by their absence and there
is comparatively little other defect data which is directly
useful. While we continue as we do, we are going nowhere
by comparison.

What then is so difficult about engaging measurement-
based feedback in the fight against software defect and its
direct impact on system dependability?

2.1 Defects and frequency

2.1.1 The eponymous line of code

The first thing we must reluctantly accept is that the stalwart
of source code measurement, the line of code, has to be
discarded. There are two main resons:

• It is not well-defined as it bears the syntactical char-
acter of whatever programming language is in use.
So we might have SLOC (Source lines of code), which
is roughly what we see in a text editor and includes
blank and comment lines; PPLOC (Pre-processed
lines of code), relevant to programming languages
with a pre-processing stage in the compiler such as
C and C++, realising that this expands included files;

4. For example, the links at https://www.sanger.ac.uk/data/1000-
genomes/, accessed 19-Aug-2023.

5. https://ftp.uniprot.org/pub/databases/uniprot/, accessed 19-
Aug-2023

6. Extensive list at https://www.hgvs.org/central-mutation-snp-
databases, accessed 19-Aug-2023.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 4

XLOC (Executable lines of code), which are those
lines which cause a compiler to generate executable
code, probably the most reliable measure. Unfortu-
nately, these are in decreasing order of accessibility so
those who bother quote SLOC as being synonymous
with ”Lines of Code”.

• It has no relevance to any useful concept in Informa-
tion theory.

Some further comments are in order. The experience of
my co-author Michiel van Genuchten and I in the IEEE Soft-
ware Impact series which has been running since 2010 [12]
is that most organisations actually have only the roughest
idea of how much code they actually have and perhaps
more importantly, how much actually contributes to the run-
time behaviour of their systems. It is usually rounded to the
nearest million or so, but rarely does anybody actually know
to the extent required for measurement-based improvement,
although we do know quite accurately how fast open source
code is growing in projects measured in SLOC [8].

The second point above comes to the fore in the light
of [13] who demonstrate that by using programming lan-
guage tokens, a concept directly related to Hartley-Shannon
information, emergent properties are clearly visible in large
populations of source code which remain obscured if the
cruder measure of lines of code is used. In fact it emerges
that the length distribution of software components mea-
sured in programming language tokens follows a precisely
predictable distribution characterised by a sharp linear rise
followed by a very precise power-law, independently of what
the software does or the language used. The Appendix contains
more detail of this phenomenon and the reason for its
representation independence.

The first step forward then is to dispense with lines of
code of any kind and measure program size in language
tokens. Only then will we have a reliable, representation-
independent measure of size with a firm theoretical basis.

2.2 Defects

If anything, the measurement support for defects is even
worse. In essence a defect is an error in a program which
causes it to behave unexpectedly and no paper on depend-
ability would be complete without some kind of road-map
on how defects are or might be distributed in any software
system. Defects are intimately related to dependable com-
puting but the relationship is complex to say the least. It is
perfectly possible to have a program full of defects which
is completely dependable by virtue of the fact that the only
exercised bits of the software do not contain the defects.
On the other hand, it is also perfectly possible to have a
program with very few defects which is not dependable by
virtue of their location in a commonly executed program
path. This is very likely when the programmer’s view of
how a program will be used is very different from the end-
user’s perspective for example.

Having said this, computer scientists have mostly agreed
that reducing defects is a good idea even though it is widely
appreciated that zero-defect is a pipe-dream at least with
current knowledge. Let us be under no illusions: defects
occur in all software systems, however careful we are. In
a computer program, the programmer might make logic

errors, or misuse the programming language, or use a
feature of a programming language which is not well de-
fined, or may even be working from incorrect specifications.
Unfortunately, injecting defects is far simpler than detecting
and removing them. As a result, the study of defects, their
definition, their distribution and their impact, has been
engaging software researchers for decades, [SM15], [SM16],
[SM13], [SM17], [SM18], [SM19], [SM20], [SM21], [SM22],
[SM23], [SM24], [SM25]. In spite of this immense intellectual
effort, it is a moot point whether we can agree on much more
than that defects are a factor in software dependability but
in what sense and to what extent is still unknown.

Numerous attempts were made in the last century to
relate defects to something obvious and easy to measure and
lines of code was an obvious and easily accessible measure.
This resulted in a wide variety of models none of which
appear to have any lasting predictive value, [11]. Part of the
problem here is that the measurement of defect is often mad-
deningly vague. Such datasets as there are, are noisy in the
extreme or it is not clear whether researchers are consistent
in what they view as a defect. Even in a mature ubiquitous
system with a consistent policy of defect reporting, no useful
relationships with the source code emerged other than that
defects cluster in components [SM26], by which we mean
sub-programs, functions or subroutines. This is not new - it
has been previously reported by [SM15], [SM19]. Matters are
even worse in a commercial environment, where admitting
the possibility of a defect in a product is likely to upset the
management and legal team, so comprehensive commercial
openly accessible case studies are almost unknown.

2.3 A conflation of units

At the root of the problem of course is that there is no
clear relationship between the presence of defects and the
dependability of the system in which they are found as
noted more than 20 years ago by [11]. Perhaps we should not
be surprised. The presence of defects and their frequency is
intimately related to static properties of the source code as
evidenced by our obsession with lines of code. The attrac-
tion of this is that given the source code we might be able
to predict the dependability of the code in the hands of the
user. Unfortunately the user of course is blissfully ignorant
of what the source code looks like and has a completely
different perspective. They are only interested in measures
such as how long between failures or the probability of a
system failing when it is asked to do something. These are
temporal or probabilistic dependability measures and not
without their own problems. For example, a computer pro-
gram can be astonishingly dependable with one set of inputs
and the opposite with another set. Given that the space of
all possible inputs is often enormous as noted earlier and
impossible to test in any reasonable time-scale, it is easy
to see we have a problem here also. Nevertheless, some
progress has been made with prediction models [SM27],
[SM28], [SM25], although scaleability and extrapolation re-
mains a significant problem in the rapid and ever-changing
landscape of software engineering techniques.

2.4 Accepting emergent rules

It is not all bad news of course. Everything is depend-
able provided its limits can be determined by appropriate

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 5

measurement and applied in future designs to avoid stray-
ing outside those limits. In civil engineering, dependable
transferable rules of thumb underpinned by some kind of
measurement are vital. These rules simply emerge from
the behaviour of systems such as the propensity for box-
section girders to fail within a civil engineering structure as
discussed earlier.

We can ask if similar transferable rules have emerged
from any of the software engineering experiments we have
run. There certainly have been defect studies which contain
such transferable lessons although qualitative rather than
quantitative, for example Adams long-term study of the
IBM operating system [SM29] which demonstrated that a
significant percentage of defects took an exceedingly long
time to fail for the first time. Theoretical work illustrating
the difficulties that this presents to the analysis of depend-
ability was carried out by Littlewood and co-workers [14],
[15] and we must remember that one experiment does not
make a rule.

Mimicking some aspects of conventional engineering
such as redundancy using N-version methods has been
successful and there is an extensive literature on this starting
with [SM1]. There are still concerns about the independence
of the individual channels as raised originally by [16] and
revisited by [17] but the technology certainly appears to
improve dependability and is used in for example, railway
signalling [18]. The problem inhibiting its scaleability is cost
with each channel being developed independently.

Given all these uncertainties, it seems unlikely that we
will ever get a handle on a mechanistic view of how defects
are introduced, much less on how they then go on to cause
failure. In fact such a viewpoint may even be irrelevant as
there is now evidence that at least some aspects of software
systems such as their component length distribution as a
function of programming language tokens are an emergent
property of all discrete systems. (see Appendix).

2.5 Is AI going to help?

New technologies in IT still have the ability to titillate the IT
industry in spite of the extraordinary number of technolo-
gies we have inflicted on the world in the last 25 years or so.
AI is simply the latest in an everlasting stream of creativ-
ity. As always, prospective users must tread the tightrope
between possible beneficial advantage and certainly in the
case of AI, likely considerable dangers. This wouldn’t be
the first IT technology which promised much but turned
out to have a significant downside. Social media promised
a new form of informal interaction and easy sharing of
opinions. Nobody really foresaw the downsides: internet
bullying, the fuelling of conspiracy theories, anonymous
trolling, the proliferation of fake news and the like. Its not
the technology’s fault or even its inventors. It is simply
because like most IT developments, there is boundless scope
for users to find unexpected uses.

The use of AI seems limited only by the imagination and
ambition of its supporters but of particular relevance here is
that of automatic code generation. This appears to be a real
problem in the making7

7. For example https://www.techspot.com/news/91984-almost-30-
percent-new-github-code-written-ai.html and a number of other
sources, accessed 19-Aug-2023.

It is easy to be a Luddite but perhaps the only sensible
comment worth making at this point is: ”Would you trust AI
generated code trained on what we have managed to produce so
far?” This needs to be taken much more seriously.

2.6 Dependable computing and the future of science

This may sound somewhat apocalyptic but the scientific
method itself is at something of a crossroads as more and
more of its traditional landscape of empiricism and falsifia-
bility is invaded by results derived from computer programs
of essentially unquantifiable dependability, [19]. It is only
relatively recently that some journals have started requiring
the complete computational means of reproducing any and
all results quoted in a particular paper. Most journals do
not however and it is probably not unfair to state that far
too much scientific research depending on extensive com-
putation is wrong to an unquantifiable degree. Unpalatable
though it may be, this will no doubt improve but it is
symptomatic of reliance on an immature technology and
dependable software is indeed an immature technology. For
a good discussion of this see [20].

3 CONCLUSION

It would seem that measurements of software defects, fail-
ure rates and even something as basic as size are so prim-
itive or non-existent as to completely undermine attempts
to refine a technology by the time-honoured engineering
methodology of measurement-based feedback. We can cer-
tainly do something about size as described in the Appendix
but this is merely one facet and there is little hope of
employing failure feedback whilst we operate with one
hand tied behind our backs.

There are many reasons for this, and some would argue
laudable reasons. For example, technological overturn oc-
curs at an extraordinarily rapid rate in IT in general and in
software development in particular with entire methodolo-
gies coming and going along with a seemingly inexhaustible
supply of new languages. This certainly satisfies our creative
instincts but means that no technology keeps still long
enough for any analysis of failure measurements to exert
its influence. This is in stark contrast not only with con-
ventional engineering disciplines but even with computer
hardware development where progress has been immense
in the same period. One of the superficial advantages of
not measuring anything of course is the ”ignorance is bliss”
principle. If we are to train generative AI systems to produce
the next generation of code, don’t expect them to remove the
bugs. To an AI system they are merely data. We are the ones
that define bugs and we have not been very good at it so far.

It may be fun but it isn’t engineering.

APPENDIX A

STATIC MEASURES

A.1 The most likely distribution of defects

Earlier, it was stated that one of the key advantages of using
programming language tokens rather than lines of code was
its natural relationship with Hartley-Shannon Information
[SM30], [SM31]. Essentially, tokens are the elements of pro-
gramming language recognised at the lexical analysis stage

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 6

of a compiler. They are free of the arbitrariness of definition
of lines of code and are uniquely-defined, indivisible and
form part of an alphabet of symbols whose information con-
tent is well-defined. As such, they are an excellent candidate
as a length measure but we need to justify that this is a
worthwhile step given the increased difficulty in extracting
tokens compared with lines of code.

Such justification is provided by [SM32], [13] who show
that using tokens as a length measure allows the power
of statistical mechanics to be used to make a reassuringly
precise component length distribution measured in tokens,
confirmed at various scales and for various programming
languages, (for example, Figs 9 and 10 of [SM32]). At the
larger scales, the predicted pdf given by Fig. 1 accurately
anticipates the distribution of function lengths displayed as
frequencies of occurrence in tokens of Fig. 2, taken from an
aggregate of 80 million (or so) lines of code. The theory,
which is based on the Conservation of Hartley-Shannon
Information (CoHSI) [13], predicts an asymptotic power-
law of high quality whatever the implementation language,
technology or application area. for components larger than the
mode of Fig. 1 and this is indeed what is found in the
sense that large quantities of measurement data based on
the availability of open source software, for example Fig. 2,
are unable to falsify it.

As non-intuitive as it may sound, it is as true and indeed
directly related to the extraordinary and widely-known
power-law which was observed by [SM33] to predict word
frequencies in texts irrespective of their language, author or
subject. In a software context, power-laws in length distri-
butions have the property of producing significant numbers
of very large components in all systems because power-laws
do not decay to zero very quickly [SM34]. The presence of
large components in a system therefore is not necessarily
a symptom of poor design decomposition but more likely
a statistical inevitability. It is quite simply the most likely
distribution.

Finally, to emphasize the commonality of this distribu-
tion amongst discrete systems, [13], [SM35] also show that
this is precisely the same length distribution as the known
proteome, (a collection of currently 200 million proteins with
length measured in amino acids [SM36]). Software function
length distributions and protein length distributions are in
terms of Information Theory, indistinguishable.

It can be strongly argued therefore that tokens be used
as a measure of software source code size rather than any
attempt to define a line of code. Although lack of space
prohibits expanding on this here, lines of code do not
correlate particularly well with tokens, especially for smaller
components. For the data of Fig. 2, an R analysis using
lm() gives an adjusted R

2 = 0.88, with p < 10
−16 with

tokens/SLOC ≃ 6. We can summarise by saying that tokens
are unambiguous, easily verifiable and language agnostic
and have the required relationship to well-established the-
ory to give an excellent basis for measuring the size of a
computer program.

Can we predict defect occurrence in the same way?
The short answer seems to be yes in that the method-

ology of divining defect distributions using Information
Theory embedded within Statistical Mechanics is just as
applicable but sadly the available defect data is so sparse

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 100 200 300 400 500 600 700

C
o

H
S

I
F

re
q

u
e
n

c
y

 o
f

ti

ti

CoHSI solution

Fig. 1. A typical solution described by [13] shown as a pdf. Note the
sharp unimodal peak followed for larger components by an extremely
precise power-law.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

#
 C

o
m

p
o

n
e
n

ts
 w

it
h

 v
a
lu

e
 t

i

ti (tokens)

Fig. 2. 80 million lines of C shown as a frequency distribution of number
of components versus size in programming tokens.

that no sensible attempt to falsify the resulting predictions
can be made with current knowledge. There are one or two
datasets of the required granularity with the required source
code and defect data at the component level, for example,
[SM22], [SM26], but this unfortunately is a drop in the ocean.
Compared with the use of tokens above for which there are
literally millions of data points, defect data is currently a
non-starter.

This must change; a pipe-dream perhaps, but not as
much a pipe-dream as expecting to improve a system by
guesswork.

APPENDIX B

DYNAMIC MEASURES

Dynamic measures include failure rates and classification as
well as probability of failure on demand. We know perfectly
well how to measure these but judging by the paucity of
widely available data, we either don’t bother or we keep it
secret. Neither is likely to help in any significant way.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 7

ACKNOWLEDGMENTS

The author would like to thank the many researchers over
the years who have attempted to understand this most
intractable of problems.

REFERENCES

[1] Zhivich M, Cunningham R. The Real Cost of Software Errors.
Security & Privacy, IEEE. 2009 05;7:87 90.

[2] Mun H, Han K, Lee DH. Ensuring Safety and Security in CAN-
Based Automotive Embedded Systems: A Combination of Design
Optimization and Secure Communication. IEEE Transactions on
Vehicular Technology. 2020;69(7):7078-91.

[3] Koopman P. How Safe Is Safe Enough? Measuring and Predicting
Autonomous Vehicle Safety. Independent; 2022.

[4] Fiondella L, Nikora A, Wandji T. Software Reliability and Security:
Challenges and Crosscutting Themes. In: 2016 IEEE International
Symposium on Software Reliability Engineering Workshops (ISS-
REW); 2016. p. 55-6.

[5] Kassab M, DeFranco JF, Laplante PA. Software Testing: The State of
the Practice. IEEE Software. 2017;34(5):46-52.

[6] Jones EL. Software testing in the computer science curriculum –
a holistic approach. In: Proceeding ACSE ’00 Proceedings of the
Australasian conference on Computing education. New York, NY,
USA: ACM; 2000. 10.1145/359369.359392.

[7] Pfleeger SL, Hatton L. Do formal methods really work ? IEEE
Computer. 1997;30(2):p.33-43.

[8] Hatton L, Spinellis D, van Genuchten M. The long-term growth rate
of evolving software: Empirical results and implications. Journal of
Software: Evolution and Process. 2017;29(5).

[9] Tichy WF. Should computer scientists experiment more ? IEEE
Computer. 1998 May;31(5):32-40.

[10] McCabe T. A software complexity measure. IEEE Transactions on
Software Engineering. 1976;2(4):308-20.

[11] Fenton NE, Neil M. A critique of software defect prediction
models. IEEE Transactions on Software Engineering. 1999;25(5):675-
89.

[12] van Genuchten M, Hatton L. Software: What’s in
it and What’s it in ? IEEE Software. 2010;27(1):14-6.
Http://doi.ieeecomputersociety.org/10.1109/MS.2010.19.

[13] Hatton L, Warr G. Strong evidence of an information theoretical
conservation principle linking all discrete systems. RSoc open sci.
2019 11;6(191101).

[14] Littlewood N, Strigini L. Validation of Ultra-High Dependabil-
ity for Software-based Systems. Communications of the ACM.
1993;36(11):69-80.

[15] Littlewood B, Strigini L. Software reliability: ba-
sic concepts and assessment methods. Software
Engineering, International Conference on. 2000;0:831.
Http://doi.ieeecomputersociety.org/10.1109/ICSE.2000.10085.

[16] Knight JC, Leveson NG. An experimental evaluation of the
assumption of independence in multi-version programming. IEEE
Transactions on Software Engineering. 1986;12(1):96-109.

[17] Hatton L. Are N versions better than one good version ? IEEE
Software. 1997;14(6):71-6.

[18] Eriş O, Yıldırım U, Durmuş MS, Söylemez MT, Kurtulan S.
N-version Programming for Railway Interlocking Systems: Syn-
chronization and Voting Strategy. IFAC Proceedings Volumes.
2012;45(24):177-80. 13th IFAC Symposium on Control in Trans-
portation Systems.

[19] Ince DC, Hatton L, Graham-Cumming J. The case for open
program code. Nature. 2012 02;482:485-8. Doi:10.1038/nature10836.

[20] Thimbleby H. Improving Science That Uses Code. The Computer
Journal. 2023 08:bxad067.

PLACE
PHOTO
HERE

Les Hatton Les Hatton Ph.D. is a mathematician
and emeritus professor of computing at Kingston
University, London. He is currently working on
problems in genetics.

This article has been accepted for publication in Computer. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MC.2023.3326947

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMPUTER, VOL. XXXX, NO. XXXX, XXXX 2023 8

SUPPLEMENTARY MATERIALS BIBLIOGRAPHY

[SM1] A. Avizienis and J.-C. Laprie. Dependable computing: From
concepts to design diversity. Proceedings of the IEEE, 74(5):629–
638, 1986.

[SM2] Les Hatton. Safer C: Developing software in high-integrity and
safety-critical systems. McGraw-Hill, 1995. ISBN 0-07-707640-0.

[SM3] Hassan B. Diab and Albert Y. Zomaya. Dependable Computing
Systems: Paradigms, Performance Issues, and Applications. Wiley,
2005.

[SM4] John Knight. Fundamentals of Dependable Computing for Software
Engineers. Routledge, 2012.

[SM5] Rogerio de Lemos. Special issue on dependable computing:
theory and practice. Computing, 101:75–76, 2019.

[SM6] Long Wang. Introduction: Software Dependability, pages 3–5.
Springer International Publishing, Cham, 2023.

[SM7] Henry Petroski. To Engineer is Human: the role of failure in
successful design. Vintage, 1992.

[SM8] Charles Perrow. Normal Accidents: living with high risk technolo-
gies. Princeton University Press, 1999.

[SM9] Henry Petroski. Success through Failure: the paradox of design.
Princeton University Press, 2008.

[SM10] F.P. Jnr. Brooks. The Mythical Man Month. Addison-Wesley,
1975. ISBN 0-201-00650-2.

[SM11] Glenford J. Myers. The Art of Software Testing. Wiley, 1979. isbn
978-0-471-04328-7.

[SM12] John D. Musa. Operational profiles in software-reliability
engineering. IEEE Softw., 10(2):14–32, March 1993.
10.1109/52.199724.

[SM13] B. Beizer. Software Testing Techniques. Van Nostrand, 1990. ISBN
0-442-20672-0.

[SM14] C. Haddon-Cave. An independent review into the broader
issues surrounding the loss of the raf nimrod mr2 aircraft xv230
in afghanistan in 2006, Oct 2009. isbn 978-0-10-296265-9.

[SM15] V.R. Basili and B.T. Perricone. Software er-
rors and complexity: an empirical investiga-
tion. Comm. ACM, 27(1):42–52, January 1984.
http://www.lsmod.de/ bernhard/cvs/text/dipl/papers/p42-
basili.pdf.

[SM16] B.T. Compton and C. Withrow. Prediction and control of Ada
software defects. Journal of Systems and Software, 12:199–207,
1990.

[SM17] Jeff Tian and Joel Troster. A comparison of measurement
and defect characteristics of new and legacy software systems.
Journal of Systems and Software, 44(2):135 – 146, 1998. DOI:
10.1016/S0164-1212(98)10050-X.

[SM18] N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS, 2nd edition, 1997.

[SM19] B. Boehm and V.R. Basili. Software defect reduction top 10 list.
IEEE Computer, 34(1):135–137, 2001.

[SM20] R. Subramanyam and M.S. Krishnan. Empirical analysis of
CK metrics for object-oriented design complexity: Implications
for software defects. IEEE Transactions on Software Engineering,
29(4):297–310, April 2003.

[SM21] Hongfang Liu A. Gunes Koru, Dongsong Zhang. Modeling the
effect of size on defect proneness for open-source software. In
PROMISE ’07: Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, page 10, Washington,
DC, USA, 2007. IEEE Computer Society.

[SM22] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller.
Predicting defects for eclipse. In Proceedings of the Third In-
ternational Workshop on Predictor Models in Software Engineering,
PROMISE ’07, pages 9–, Washington, DC, USA, 2007. IEEE
Computer Society.

[SM23] A. Güneş Koru, Khaled El Emam, Dongsong Zhang, Hongfang
Liu, and Divya Mathew. Theory of relative defect proneness.
Empirical Softw. Engg., 13(5):473–498, 2008.

[SM24] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz
Wotawa. A survey on software fault localization. IEEE Trans-
actions on Software Engineering, 42(8):707–740, 2016.

[SM25] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto,
and A. De Lucia. A Developer Centered Bug Prediction Model.
IEEE Transactions on Software Engineering, 99, 2017.

[SM26] Tim R. Hopkins and Les Hatton. Defect patterns and software
metric correlations in a mature ubiquitous system. arXiv, 2019.
arXiv:1912.04014.

[SM27] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M.
Bell. Predicting the location and number of
faults in large software systems. IEEE Transac-
tions on Software Engineering, 31(4):340–355, 2005.
http://doi.ieeecomputersociety.org/10.1109/TSE.2005.49.

[SM28] Stephan Neuhaus, Thomas Zimmermann, Christian Holler,
and Andreas Zeller. Predicting vulnerable software
components. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications secu-
rity, pages 529–540, New York, NY, USA, 2007. ACM.
http://doi.acm.org/10.1145/1315245.1315311.

[SM29] E.N. Adams. Optimizing preventive service of software prod-
ucts. IBM Journal of Research and Development, 28(1):2–14, 1984.

[SM30] R.V.L. Hartley. Transmission of information. Bell System Tech.
Journal, 7:535, 1928.

[SM31] C.E. Shannon. A mathematical theory of communication. Bell
System Tech. Journal, 27:379–423, 07 1948.

[SM32] Les Hatton and Greg Warr. Information theory and the
length distribution of all discrete systems. arXiv, 9 2017.
http://arxiv.org/pdf/1709.01712 [q-bio.OT].

[SM33] George K. Zipf. Psycho-Biology of Languages: an introduction to
dynamic philology. Houghton-Miflin, Boston MA, 1935.

[SM34] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos.
Power laws in software. ACM Trans. Softw. Eng. Methodol.,
18(1):2:1–2:26, October 2008.

[SM35] L. Hatton and G.W. Warr. Exposing Nature’s Bias: the Hidden
Clockwork behind Society, Life and the Universe. Bluespear Pub-
lishing, 2022. isbn 978-1-908-42204-0.

[SM36] SwissProt. The SwissProt release, 17-03, 2017. SwissProt
http://www.uniprot.org/.

