
Title: The Ariane 5 bug and a few lessons

Author: Les Hatton, Oakwood Computing, U.K. and the Computing Laboratory,
University of Kent, UK.

TOC: A fascinating example of a problem caused by a strength in a programming
language and not a weakness.

ARTICLE:

On the 4th June, 1996, the maiden flight of the Ariane 5 launcher ended after 40
seconds with the launcher spread over a fairly large part of Kourou, greatly
depressing the market in tiny pieces of launch vehicle. The enquiry board
responded with commendable speed and on the 19th July, a report came out
describing its deliberations and conclusions and fascinating reading it makes too.

This incident is one of a wide class of famous failures based on precision
problems, (one of these was responsible for the Patriot missile failure in the Gulf
War in 1991 which led to the death of 29 people; another led to the Bank of New
York having to borrow $24 billion for a day from the Federal Reserve a few years
ago). The interesting thing about this class of problem is that they are generally
statically detectable and are therefore highly avoidable.

In the case of Ariane 5, the programmers had arranged the code such that a 64 bit
floating point number was shoe-horned into a 16-bit integer. This is not easy in
Ada, the programming language used, in fact you have to override the compiler’s
objections to achieve it, so they did. There were seven such occasions but only
four of them protected against the possibility of overflow. The other three were not
protected because the programmers thought they could never overflow. They were
wrong. Now it gets interesting.

The offending piece of software was actually re-used from Ariane 4, (re-use was
also implicated in the tragic software failure in Therac-25 which led to the death of
3 people after severe radiological overdose). In fact, this piece of software had no
relevance to the flight of Ariane 5, its use ceasing at the point of lift-off. However, it
continued to run. Approximately 37 seconds into the flight, the 16-bit integer
overflowed. Now in a sloppier language like C, the program would have continued
happily rumbling away to itself but would not in all probability have interfered with
the flight. However, the Ada language is made of sterner stuff. Faced with this run-
time exception, the program threw an exception as any reasonable language
should in such a situation. The programmers did not handle the exception
because the assumption was made that the program was correct until proved at
fault, apparently a feature of the programming culture for this system, (this
observation is worth an article in itself). The default action was regrettably to close
the system down, including other components which were critical.

At this point, Ariane 5 then demonstrated the fundamental weakness of restricted 2-
way diversity. The offending piece of software runs in an SRI (Inertial Reference
System) of which there are two, a primary system and a ‘hot’ back-up. When the
first fails, the backup jumps in and takes over. Each SRI duplicates the hardware
and the software. When the primary SRI closed down, the backup SRI took over
and not surprisingly, failed for the same reason 72 msec. later. From this point on,

Ariane 5 assumed the aerodynamic properties of an overhead projector and shortly
afterwards turned it self into 12 km. of debris.

What can we learn from this ? There are several lessons:-

a) Type and precision mismatching is once again identified as a primary
source of computer systems failure. For compilers which do not warn
adequately of such precision faults, they are often statically detectable by
reasonable tools. In stronger typed languages, for example, Ada, you
actually have to go to significant lengths even to circumvent the compiler’s
objections to this dangerous practice. For the Ariane 5 programmers to
subvert this apparently on the grounds that they can avoid problems by
reasoning alone seems highly questionable.

b) Re-use without very detailed re-analysis can be a dangerous de-stabiliser of
systems behaviour. Re-use is considered one of the great hopes of modern
software engineering, but if you re-use a component inappropriately or you
re-use a faulty component, the system certainly isn’t going to get better.
There are enough examples of this happening to cast considerable doubt on
our current understanding of re-use.

c) Diverse systems running the same software are effectively useless given
that the average piece of hardware is much more reliable than any software.
Look at PCs for example, where a hard disc has a mean time between
failures of around 1,000,000 hours these days, whereas the hapless
Windows falls over with a mean failure time of a few hours, (minutes if you
are doing software development). (This also gives me the chance to repeat
something I have been saying for two years now and is becoming more and
more obvious. Linux appears to be at least 2 orders of magnitude more
reliable than any form of Windows, so it is possible to produce robust
software).

d) Lastly, and the point I’m really coming to, is that the programming language
is only one part of the jigsaw of systems behaviour. Here, a strength of the
Ada language, inappropriately handled led directly to the spectacular failure,
where a sloppier language might not have. The lesson here is that it is not
so much the programming language which is important as the programmer’s
fluency in whatever language is in use and reasoning about systems
behaviour from the point of view of the language alone can be a
dangerously misleading practice.

Finally, I understand that because this was the first launch, some of the payload
satellites travelled for free, which just goes to show that there is no such thing as a
free launch.

AUTHOR BIO:
Les Hatton has been suffering from computer systems for 30 years. He is a
software consultant and Professor of Software Reliability at the University of Kent.
In October 1998, he was named in the ‘world’s leading 15 scholars of systems and
software engineering’ by the US Journal of Systems and Software.

SIDEBARS:
None.

